高中作文网

功能高分子材料的特点(6篇)

时间: 2024-04-14 栏目:公文范文

功能高分子材料的特点篇1

关键词:梯度功能材料,复合材料,研究进展

TheAdvanceofFunctionallyGradientMaterials

JinliangCui

(Qinghaiuniversity,XiningQinghai810016,china)

Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

Keywords:FGM;composite;theAdvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2,其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3],如图1所示。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2FGM的特性和分类

2.1FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

图2

2.2FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3FGM的应用

FGM最初是从航天领域发展起来的。随着FGM研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。FGM的应用[8]见图3。

图3FGM的应用

功能

应用领域材料组合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材陶瓷金属

陶瓷金属

塑料金属

异种金属

异种陶瓷

金刚石金属

碳纤维金属塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素高强度材料

耐热材料遮避材料

耐热材料遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石氧化铝

磷灰石金属

磷灰石塑料

异种塑料

硅芯片塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压电陶瓷塑料

压电陶瓷塑料

硅化合物半导体

多层磁性薄膜

金属铁磁体

金属铁磁体

金属陶瓷

金属超导陶瓷

塑料导电性材料

陶瓷陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素玻璃

能源转化功能

MHD发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷高熔点金属

金属陶瓷

金属硅化物

陶瓷固体电解质

金属陶瓷

电池硅、锗及其化合物

4FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。FGM的研究开发体系如图4所示[8]。

设计设计

图4FGM研究开发体系

4.1FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM),自蔓延高温合成法(SHS);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD)和化学相沉积(CVD);形变与马氏体相变[10、14]。

4.2.1粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。

4.2.2自蔓延燃烧高温合成法(Self-propagatingHigh-temperatureSynthesis简称SHS或CombustionSynthesis)

SHS法是前苏联科学家Merzhanov等在1967年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

图6SHS反应过程示意图

SHS法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS法己制备出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4.2.3.1等离子喷涂法(PS)

PS法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

图7PS方法制备FGM涂层示意图[17](a)单枪喷涂(b)双枪喷涂

4.2.3.2激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。

图8同步注粉式激光表面熔覆处理示意图[18]

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]

4.2.4形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(Fe-18%,Cr-8%Ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5FGM的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2FGM制备技术总的研究趋势[13、15、19-20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6结束语

FGM的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献:

[1]杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.

[2]李永,宋健,张志民等.梯度功能力学[M].北京:清华大学出版社.2003.

[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.

[4]曾黎明.功能复合材料及其应用[M].北京:化学工业出版社,2007.

[5]高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J].山西建筑,2006,32(5):143-144.

[6]Erdogan,F.Fracturemechanicsoffunctionallygradedmaterials[J].Compos.Engng,1995(5):753-770.

[7]李智慧,何小凤,李运刚等.功能梯度材料的研究现状[J].河北理工学院学报,2007,29(1):45-50.

[8]李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J].菏泽学院学报,2007,29(5):51-55.

[9]林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.

[10]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J].金属制品,2005,31(4):4-9.

[11]戈晓岚,赵茂程.工程材料[M].南京:东南大学出版社,2004.

[12]唐小真.材料化学导论[M].北京:高等教育出版社,2007.

[13]李进,田兴华.功能梯度材料的研究现状及应用[J].宁夏工程技术,2007,6(1):80-83.

[14]戴起勋,赵玉涛.材料科学研究方法[M].北京:国防工业出版社,2005.

[15]邵立勤.新材料领域未来发展方向[J].新材料产业,2004,1:25-30.

[16]自蔓延高温合成法.材料工艺及应用/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17]远立贤.金属/陶瓷功能梯度涂层工艺的应用现状./articleview/2006-6-6/article_view_405.htm.

[18]工程材料./zskj/3021/gccl/CH2/2.6.4.htm.

功能高分子材料的特点篇2

对新材料的政策倾斜并非我国特有。近年来各国竞相发展新材料占领制高点,多个国家制定了推动本国、本地区的新材料技术和产业发展计划,在资金上给予大力支持。

资料显示,世界材料产业的产值以每年约30%的速度增长,微电子、光电子、新能源等是研究最活跃、发展最快、应用前景最为投资者所看好的新材料领域。

目前,在我国产业结构升级、促进战略性新兴产业发展和国防军工飞跃的背景下,各行业对新材料的突破和应用致使我国对新材料有着旺盛且急切的需求,国家对发展新材料的扶持政策加码是必然选择。

未来,新材料产业或将被定性为“国民经济的先导产业”,国家也将在经费投入、规划制定、产业政策和成果转化等方面给予支持,新材料投资也必将迎来新的机遇。

在此背景下,我们特别选出新材料领域近年来最热门的特种金属功能材料,对其发展现状和未来趋势进行研究,以飨读者。

新兴产业的必备材料

特种金属功能材料是指具有独特的声、光、电、热、磁等性能的金属材料。《新材料产业“十二五”发展规划》将我国新材料分成6大领域,其种金属功能材料就是新材料产业体系的重要组成部分。

近年来被各国争相发展的新能源汽车、风力发电机、LED照明、核电等领域的生产或者使用过程中,特种金属材料也被屡屡提及。从用途上看,特种金属功能新材料可以被广泛应用于机械装备、汽车、航空航天、海洋工程、家电、船舶、电子、化工、医学等多个领域,其发展水平直接影响整个国家经济的发展。

不仅如此,特种金属功能新材料也是军用飞机、坦克、军用电子等众多军工产品生产所需的关键材料,与国家安全密不可分。因此,无论是从国民经济的发展方面还是国家安全的保障方面考虑,特种金属功能材料的发展都具有重要的战略意义。

根据《新材料产业“十二五”发展规划》,特种金属功能新材料又被细分为稀土功能材料、稀有金属材料、半导体材料及其他功能合金材料四大类。

先说特种金属功能新材料的第一大类――稀土功能材料。稀土功能材料包括磁性材料、发光材料、催化材料、储氢材料等。基于稀土资源的优势地位,我国稀土功能材料发展迅速,稀土永磁材料、发光材料、储氢材料、抛光材料等均占世界产量的70%以上。

其中,稀土磁体材料产量增长最为迅速,2012年我国稀土永磁材料产量达8.96万吨,较2008年增长81.7%。稀土发光材料目前已形成节能灯用稀土发光材料、显示器用稀土发光材料和特种光源用稀土发光材料三大主流产品,随着全球节能照明和消费电子的快速发展,发光材料新技术、新产品不断涌现。

稀土催化材料则随着汽车尾气排放标准的不断提升,尾气净化器产量不断增长而快速增长。2012年用于尾气净化器的稀土催化材料比2008年增长了62.6%。

此外,由于中国储氢合金生产技术尚未成熟,稀土储氢材料的发展相对缓慢,近年来产量并未有明显增长,反而在稀土价格上涨后呈现明显的下滑。

总体来看,尽管近几年我国稀土功能材料取得了较大发展,但产品质量相对低下,技术水平仍待提高。如稀土磁体材料领域,我国高性能稀土磁体材料全球市场份额不足10%;高端荧光粉领域,中国白光LED荧光粉占全球比重不足10%,CCFL荧光粉仅有小批量生产,PDP荧光粉市场尚属空白。

特种金属功能材料的第二大类是稀有金属功能材料,它主要包括钨钼材料、钽铌材料、稀贵金属材料及核级稀有金属材料。

其中,近年来发展最快的是钨钼材料,但与世界先进水平相比,我国钨钼加工产业还存在着相当大的差距,大部分企业装备仍较为粗糙、落后。

钽铌材料也是近年发展较快的稀有金属功能材料。我国已具备了钽金属及合金制品、铌金属及合金制品的生产能力,并成为钽铌材料生产大国,拥有宁夏东方钽业股份有限公司、九江有色金属冶炼有限公司、肇庆多罗山蓝宝石稀有金属有限公司等世界著名企业。2012年,我国电容器用钽粉占世界总产量的比重为25%,电容器用钽丝产量占世界总产量60%以上。但总体来看,目前我国钽铌冶炼加工企业工业产品高端品种偏少、技术含量不高,与国际先进水平相比,企业规模、生产技术以及科技研发水平均存在一定差距。

加快推进核级稀有金属材料国产化是当前的主要任务。锆合金是重要的核电机组堆芯结构材料,但我国现役核电机组堆芯结构使用的绝大部分锆合金材料仍然需要进口。同样,核工业中银铟镉材料受限于我国熔炼、热处理、精整和成型技术和设备制约,目前也大多采用进口。

特种金属功能新材料的第三大类是半导体材料,它主要包括半导体硅材料、新型半导体材料及薄膜光伏材料。

近几年我国硅材料产业发展迅速,但半导体硅材料发展十分缓慢。2009-2012年我国半导体用多晶硅的产量年均增速不足10%。虽然目前我国半导体硅材料拥有一定的生产能力,但仍与国际先进水平存在较大差距。如我国半导体硅材料只能满足国内对4-6英寸硅外延片和4-6英寸重掺硅外延衬底片的需求,满足国内企业对高阻抛光硅片的部分需求,但国内所需的8英寸及12英寸硅抛光片仍有大部分需要进口。

虽然我国十分重视新型半导体材料产业发展,但由于我国研发基础较为薄弱,具有自主知识产权的创新成果较少,产业发展缓慢。我国已经具备了蓝宝石、砷化镓等新型半导体材料的生产能力,但大多数企业自主研发能力较差,低端产品较多,产品的性能指标与国外存在较大差距。目前,国内所需的高端新型半导体材料仍需进口。

除上述三类外的高性能靶材、先进储能材料、新型铜合金、硬质合金材料等都被划分为特种金属功能新材料的第四大类――其他功能合金材料,在产业发展方面也存在迫切需求。

存在的问题

近几年我国特种金属功能新材料的发展取得了一定成绩,如稀土永磁材料生产规模不断增大,硬质合金产业空间布局不断优化,难冶钨资源深度开发应用关键技术获得突破,科力远、中科三环等骨干企业迅速成长。但是,我国特种金属功能材料发展与国外先进发达国家相比还存在较大差距,产业发展也存在一些问题。主要表现在:

第一,部分关键材料依赖进口。

有些材料仍然停留在实验室技术研发阶段,国内尚未实现产业化,完全依赖进口,如超高纯度金属的溅射靶材、高纯度多晶硅等;而有些则是国内拥有生产能力,但产量、性能和质量不能满足要求,如平板显示器所需要的基板玻璃、液晶材料、光学元件等关键材料大部分仍依赖进口。

第二,自主创新能力不强。

长期以来,以跟踪模仿为主、自主创新能力薄弱成为制约当前新材料发展的重要问题。以“硅材料提纯-硅晶片生产-电池片生产-组件封装”的光伏产业链为例,其产业链上游的高纯度硅料生产技术含量高,附加值高,但由于我国多晶硅提纯技术缺失,我国光伏企业的主要业务集中于低附加值的“电池片生产”和“组件封装”,我国光伏产业处于有规模无技术的局面。

第三,研发投入不足是制约我国新材料产业发展的现实问题,主要表现在三个方面:一是研发人才的投入不足。新材料产业缺乏高层次的工程技术人员和管理人才,尤其是缺乏创新型领军人物以及复合型、外向型人才。而且,吸引高层次人才的机制环境仍需改善。

二是研发资金投入不足。以我国硬质合金领域为例,其技术研发费用占销售收入的比重不足3%,比高新技术型企业5%的比例低两个百分点。

三是技术创新所用的试验设备、仪器等物品特别是专用设备的投入力度仍待加强,如高温测试仪、超声检测仪、氧氮分析仪、扫描电子显微镜等专用设备价格昂贵,投入严重不足。

第四,产学研用体系仍待完善。虽然目前我国政府积极组织搭建服务平台,推动产学研用紧密结合,也取得了一些成绩,但产学研用严重脱节的问题并没有实质性改变,特别是特种功能金属新材料涉及范围广泛,更需要产学研用密切结合,才能促进其快速发展。

第五,特种金属功能新材料平台建设有待加强。我国已经建成一批特种功能金属材料国家和省部级重点实验室、工程技术中心等研发平台,建立了一批创新和创业服务平台,但公共服务平台仍需进一步完善。如研发平台所需的研发设备、人员队伍等配套能力仍待加强;创新服务平台的数量还远远不能满足需要;公共服务平台的服务能力有待进一步提高;部级的共性技术研发平台和信息共享平台缺乏等。

针对上述情况,我们对我国特种功能金属新材料行业的发展提出如下建议。

第一,未来还应加强特种金属功能新材料的重大科研攻关,提高我国特种金属功能新材料的自身保障能力。对于完全进口的特种功能金属新材料品种,设立重大攻关项目,对关键新材料的生产技术、工艺设备等制约瓶颈进行科研攻关;致力于高品质、高性能产品的研发和技术改进,并积极推进产业规模化发展。

第二,夯实创新基础,提升自主创新水平。打造一批产业人才高地,形成一批国内一流的创新团队;积极落实国家鼓励企业自主创新的财税优惠政策,创造良好的创新环境。

功能高分子材料的特点篇3

料的应用十分广泛,小到灯泡、电池、手机、服装,大到机械设备、楼宇住房、交通工具、宇宙飞船、航空母舰,对国家和百姓须臾不可缺少。

随着科学技术的不断进步,出现了在性能和功能上与传统材料有所不同的新型材料,如碳纤维材料、半导体照明材料、稀土功能材料、纳米材料、超导材料等。

有专家表示,中国是材料大国,但不是材料强国;欲谋强者之地位,必推新材料。

作为七大战略性新兴产业之一,新材料越来越受到政府的重视和市场的追捧。新材料体现着一个国家科技和工业发展的水平,具有基础和先导作用,也是长期以来制约我国制造业发展和节能减排目标实现的瓶颈,对于支撑战略性新兴产业发展,促进传统产业转型升级,保障国家重大工程建设,具有重要战略意义。

分享万亿产业盛宴

新材料“十二五”规划提出,到2015年,我国新材料产业总产值达2万亿,年均增长率25%。到2022年,新材料产业将成为国民经济的先导产业。

中国材料研究学会咨询部主任唐见茂教授对本刊记者说,“新材料产业从‘十五’到‘十一五’期间,年均增长率都保持在10%以上,有的测算结果甚至达到20%,但目前还没有官方的权威数据,说明我国的新材料产业发展很快,保持着强劲的发展势头。去年《国务院关于加快培育和发展战略性新兴产业的决定》以后,为新材料产业带来了前所未有的机遇,未来五年新材料将迎来一个全新的发展时期。”

按照《规划》,未来五年,我国将打造10个销售收入超过150亿元的新材料综合龙头企业;培育20个销售收入超过50亿元的新材料专业性骨干企业;建成若干年产值超过300亿元的新材料产业基地和产业集群。

工信部对新材料的解释是,指已经形成的或正在发展的具有传统材料所不具有的特殊性能和特殊功能的材料。各省市在界定新材料概念和产业时根据本地特色又有所差异。例如江苏省是这样认定的,新材料是指新近发展的或正在研发的、性能超群的材料,具有比传统材料更为优异的性能,满足下列条件之一的材料:一是新出现或正在发展的具有传统材料所不具备的优异性能的材料;二是高技术发展需要,具有特殊性能的材料;三是由于采用新技术(工艺、装备),使新材料性能比原有性能明显提高,或出现新的功能的材料。

新材料在学界被分为金属材料、无机非金属材料、有机非金属材料、复合材料四种;而在新材料“十二五”规划中被细分为特种金属功能材料、高端金属结构材料、先进高分子材料、新型无机非金属材料、高性能复合材料、前沿新材料六大类。

据了解,特种金属功能材料包括稀土功能材料、稀有金属功能材料、半导体材料等;高端金属结构材料包括高性能钢铁、新型轻合金等;先进高分子材料包括特种橡胶、工程塑料、功能性膜材料、高性能氟硅材料、高端涂料等;新型无机非金属材料包括先进陶瓷、特种玻璃、新型碳材料等;高性能复合材料包括树脂基复合材料、碳/碳复合材料、金属基复合材料、陶瓷基复合材料以及碳纤维、芳纶、超高分子量聚乙烯纤维等高性能增强纤维;前沿新材料包括纳米材料、生物材料、智能材料、超导材料等。

关注六大投资重点

参与《规划》审定的中国材料研究学会咨询部主任唐见茂教授指出,“十二五”时期,新材料产业有六大发展重点和投资亮点,分别是特殊钢材料、新型轻合金材料、稀土功能材料、碳纤维复合材料、电子信息材料、半导体照明材料。另外还有纳米、超导等前沿基础材料,虽然没有形成产业化应用,但必须提前谋划和推进,要抢占未来科技和产业的制高点。

高品质特殊钢和高强新型轻合金等高性能结构材料,主要满足核电、航空航天、城市轨道交通、高速铁路、海工、特高压电网、汽车轻量化以及其他国民经济的重大工程需求。目前与西方发达国家差距比较大。

五矿证券认为,高端钢铁以特钢为主,包括不锈钢、工具钢、模具钢和高速钢为代表的高端产品,目前国内产能占比仅5%,是未来钢铁行业升级的主要方向。其中,中原特钢、西宁特钢、大冶特钢各具优势。

新型金属合金中,钛、镁合金受益航空工业和汽车工业的快速发展,将成为“十二五”期间最有潜力的合金材料,宝钛股份、云海金属等上市公司将受益。另外,上海交通大学在镁合金研发方面具有一定优势。

我国稀土资源非常丰富,稀土被称之为工业的“维生素”,也被誉为21世纪新材料的“宠儿”。应用遍及航天、航空、汽车、机械、电子、医学、电力等13个领域的40多个行业。

“中国是世界上最大的稀土生产和消费国,形成了集资源开发、冶炼加工、新材料应用等于一体的较为完整的稀土产业体系,但仍存在着高端应用研发滞后、资源利用率不高、应用产业规模和水平偏低等问题。”工信部原料司司长陈燕海在2011稀土新材料应用交流会上表示,中央财政将加大在稀土科研、应用产业发展、高端制造等方面的支持力度,进一步发挥稀土资源优势。

唐见茂指出,稀土功能材料是一个市场热点,未来五年重点发展稀土永磁、稀土发光,稀土储能,我国稀土永磁中的钕铁硼位居世界前列,但高端的产品和自主创新的能力有待进一步提高。我国已出台了稀土的准入制度,对稀土产业进一步规范,“十二五”期间,国家还要加大稀土产业结构调整力度。

据报道,未来5年,科技部将划拨总额3.5亿元的扶持资金,用于重点支持稀土材料的应用研发。目前,稀土永磁市场规模最大。业内人士指出,稀土永磁需求继续看涨,电动汽车达到百万辆后永磁材料需求将达万吨以上,综合来看磁性材料平均增速在20%以上。代表公司有包钢稀土、中科三环、安泰科技、宁波韵升、银河磁体。

碳纤维在我国经过了40年的发展,目前技术水平与国外相比还有比较大的差距。它体现了一个国家材料工业发展的水平,也体现了一个国家的综合科技实力,它是一种全新概念的新材料,也是一种具有前沿技术和产业效益的新材料。

唐见茂对记者说,“碳材料从有机高分子材料转变而来,优势是轻质高强,主要用机结构,比铝合金还减重20%~40%,节能效果好,体现着巨大的经济效益。美国波音787梦想飞机50%的结构都采用碳纤维复合材料,燃油量可以减少20%。”

据了解,碳纤维是含碳量高于90%的无机高分子纤维。碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制成,其中,以聚丙烯腈为原料的碳纤维占市场份额75%。

华创证券分析报告指出,世界碳纤维需求每年将以大约13%的速度增长,前景看好。据不完全统计,目前在建或计划建设规模较大的碳纤维项目包括中钢吉炭江城碳纤维、蓝星碳纤维、中油吉化碳纤维等项目。从事碳纤维生产的上市公司有中钢吉炭、金发科技等。

“十二五”末期,电子信息材料行业总产值将达到2500亿元,较“十一五”基础上增长50%以上。高端电子材料将占全行业产品的40%至50%,国产材料配套能力提高到40%至50%,将重点发展半导体材料、储能材料、光电子材料及新型元器件材料。

唐见茂指出,“电子信息材料,近二三十年以高纯硅材料为主,因特尔准备弃用正在使用的第三代硅材料,而采用一种新的金属材料制造芯片,通俗地讲,以后的芯片是金属而不是沙子。金属材料做芯片比硅材料有许多优点,可以克服大规模集成电路的散热问题,提高运算速度,达到每秒几十亿次以上。电子信息材料发展前景广阔。”

据悉,电子信息材料与国外差距较大,自给率不足50%。相关上市公司有超声电子、拓日新能、生益科技、乾照光电等。

半导体照明材料是重要的新型功能材料之一,这个行业的发展对于发展中国的低碳照明、节能环保有着十分重要的意义。目前,半导体照明材料中发展最快的是LED。

“LED行业目前在整个市场上的渗透率仅有5%~7%。未来十年,整个LED产业链,有可能形成5000亿~10000亿元的市场规模。”华中科技大学教授、LED封装技术专家刘胜表示,“半导体照明材料是LED产业的基石,这可能给GDP增加1至2个百分点,这样的产业优先发展是具有极强战略意义的。”

唐见茂也指出,“这种材料的应用潜力也是不可限量的,节能效果明显,使用寿命较长,目前最大的制约因素是成本问题,一些核心技术没有完全突破。产业链的上游环节功率型芯片80%依赖国外进口,中下游应用产品发展很快。”

数据显示,我国半导体照明生产企业超过3000家,其中70%集中于下游产业,且技术水平和产品质量参差不齐。比较有发展潜力的公司有佛山照明、阳光照明等。

除了以上六个重要发展领域,为应对老龄化社会挑战的生物医用材料、落实节能环保任务要求的绿色建筑材料和动力电池材料也将获得大力支持。

破解两个突出问题

新材料虽然排在七大战略性新兴产业第六位,并不能说它不重要。“什么东西都离不开新材料。”中国材料研究学会咨询部主任唐见茂表示。

据统计,全国有30个省市将新材料纳入了战略性新兴产业。不管是经济发达地区,还是资源丰富地区纷纷上马新项目。许多业内人士对此表达了担忧,现在的重复建设已经露头,各地都在圈地建产业园,拉项目,照此下去,几年之后又会出现诸如汽车、多晶硅等产能过剩问题。

唐见茂对本刊记者说,我国的新材料产业主要面临两大挑战,“一是自主创新能力不足,虽然我国新材料的创新水平逐年在提高,发展很快,一些新材料的技术不断在突破,关键新材料产品的自给率在上升,新材料产业和企业规模在不断扩大,但与发达国家相比还有较大差距,企业的创新主体地位没有形成,一些关键技术和产品还依赖进口,跟踪、仿制的比较多,进口装备的技术消化、吸收还要加强。二是产业结构不合理,重复建设、恶性竞争比较严重,企业规模小,实力弱,比较分散。”

同样,在资本市场,新材料概念的炒作不断升级,市场上相对充裕的资金进入该行业对其发展确实带来了利好,但过多的资本进入难免会堆砌泡沫,对市场产生负面影响,中投顾问高级研究员贺在华指出。

很多地方官员也表示,社会资本热情很高,现在的问题不在于找不来钱,而在于进行合理的规划设计,保证产业发展的高度。

9月6日,工业和信息化部部长苗圩在第一届中国国际新材料产业博览会致辞中指出,新材料产业发展要遵循以下原则:一是坚持市场导向。紧紧围绕国民经济和社会发展重大需求,充分发挥市场配置资源的基础性作用,加强规划政策引导和体制机制创新,加大新材料推广应用和市场培育。二是强化创新驱动。加大原始创新、集成创新和引进消化吸收再创新力度,充分利用全球创新资源,努力突破制约新材料发展的核心技术和关键装备,着力提高新材料自主创新能力。三是突出发展重点。加快发展科技含量高、产业基础好、市场潜力大的关键新材料,选择最有可能率先突破和做大做强的领域予以重点推进,支持有条件的地区率先发展。四是加强协调推进。坚持产学研用一体化发展和军民融合式发展,加强与下游产业相衔接,在原材料工业改造提升中不断催生新材料,带动材料工业升级换代。五是注重节能环保。高度重视新材料研发、制备和使用全过程的环境友好性,走低碳环保、节能高效、循环安全的可持续发展道路。

唐见茂表示,新材料产业要做强做优,必须双管齐下,从自主创新能力和产业结构调整上下功夫,提高自主创新水平和关键产品的自给率,构建独立自主的创新体系,和完整的产业体系,满足国家重大工程和国民经济的发展需求。

对于如何提高我国新材料的创新能力,他指出,首先国家的产业体制要改革,真正形成产学研一体化,建立创新成果转化和产业化运用机制。其次要鼓励、支持大型企业和龙头企业重视研发投入,提高创新水平。国外的跨国公司和骨干企业是创新主体,如波音、杜邦、因特尔,自己都有一套有效的创新机制。我国大多数企业的创新机制还不健全,企业税负过重,研发的投入很少,不到5%。第三加强人才特别是领军人才的培养,要改革人才培养模式和科研体制,领军人才应该亲临科研第一线。第四营造良好的创新氛围和环境,提供更多的创新创业机会,使真正有才华和成果的人才脱颖而出。

功能高分子材料的特点篇4

生物医学材料是一类对人体细胞、组织、器官具有增强、替代、修复、再生作用的新型功能材料。它有独特的基本要求:①具有生物相容性,要求材料在使用期间,同机体之间不产生有害作用,不引起中毒、溶血、凝血、发热、过敏等现象;②具有生物功能性,在生理环境的约束下能够发挥一定的生理功能;③具有生物可靠性,无毒性,不致癌、不致畸、不致引起人体组织细胞突变和组织细胞反应(即“三致物质”),有一定的使用寿命,具有与生物组织相适应的物理机械性能;④化学性质稳定,抗体液、血液及酶的作用;⑤针对不同的使用目的具有特定功能。按生物医用材料性质的不同可分为四大类:①医用金属材料。主要用于硬组织的修复和置换,有钴合金(Co-Cr-Ni)、不锈钢、钛合金(Ti-6Al-4V)、贵金属系、形状记忆合金、金属磁性材料等7类,广泛用于齿科填充、人工关节、人工心脏等。②医用高分子材料。有天然与合成两类,通过分子设计与功能拓展,即合金化、共混、复合(ABC)等技术手段,可获得许多具有良好物理机械性能和生物相容的新型生物材料。③生物陶瓷材料。有惰性生物陶瓷(氧化铝陶瓷材料、医用碳素材料等)和生物活性陶瓷(羟基磷灰石、生物活性玻璃等)。④医用复合材料。由两种或者两种以上不同性质材料复合而成,取长补短,达到功能互补。主要用于修复或者替换人体组织、器官或增进其功能以及人工器官的制造。胶原属于细胞外基质的结构蛋白质,结构复杂,根据分子结构决定功能和性质的原则。其分子量大小、形状、化学反应以及独特的生物分子等对功能、性质起着决定性作用。胶原来源广泛,资源丰富,性质特殊。是21世纪生物医学材料研究和应用的热点和重点[1]。

1胶原生物医学材料的优势

(1)低免疫源性。组织胶原具有一定的免疫性,20世纪90年代研究发现,其免疫源性来自于端肽及变性胶原和非胶原蛋白质,在提取胶原时,除去端肽及纯化分离掉变性胶原和非胶原蛋白,能得到极弱免疫原性的胶原材料。(2)与宿主细胞及组织之间的协调作用。其特点:①胶原有利于细胞的存活和促进不同类型细胞的生长;②胶原不但可增加细胞黏结,而且有利于控制细胞的形态、运动、骨架组装及细胞增殖与分化。(3)止血作用。胶原的四级特殊结构能使血小板活化、释放出颗粒成分,起到迅速凝血的作用。(4)可生物降解性。胶原是一种特殊的生物降解材料,其降解性作为器官移植的基础。(5)物理机械性能。胶原的三螺旋结构以及自身交联而成网状结构,使其具有很高的强度,可满足机体对机械强度的要求;另外通过进一步的交联增强其强度,而且采用不同的交联剂可获得不同的强度和韧性材料。通过复合和接枝共聚能获得更多性能优良的材料。(6)组织工程(Tissueengineering)。胶原的优良特性使其在组织工程中扮演更重要的角色,大量应用于临床,前景广阔。

2胶原在生物临床医学上的应用

[2](1)手术缝合线。当前应用的天然与合成材料制备缝合线均存在这样那样的不足和缺陷,或者不能自然吸收,需要拆线;或者与组织反应大,引起发炎、造成伤口瘢痕明显;或者吸收时间过长等。而胶原制备的缝合线既有与天然丝一样的高强度,又有可吸收性;使用时有优良的血小板凝聚性能,止血效果好,有较好的平滑性和弹性,缝合结头不易松散,操作过程中不易损伤肌体组织。可采用复合与交联改性方法提高缝合线功能和性能,制备的可吸收缝合线有:①纯胶原可吸收缝合线;②胶原/聚乙烯醇共混复合;③胶原/壳聚糖复合可吸收缝合线;④胶原/壳聚糖/聚丙烯酰胺复合可吸收缝合线。(2)止血纤维。胶原纤维是一种天然的止血剂和凝血材料,且止血功能优异。胶原纤维是一种集止血、消炎、促愈为一体,可被组织吸收,无毒、无副作用的医用功能纤维,相比于以前使用的氧化纤维素、羧甲基纤维素及明胶海绵等止血材料,其效果要好的多。(3)止血海绵。胶原海绵有良好的止血作用,能使创口渗血区血液很快凝结,被人体组织吸收,一般用于内脏手术时的毛细血管渗出性出血。临床应用于普外科、心血管外科、整形外科、泌尿外科、骨科、皮肤科、烧伤科、妇产科以及口腔科、耳鼻喉科、眼科等几乎所有的手术。(4)代血浆。当人体由于外伤或其他原因发生意外急性失血时,最佳方法必须立刻输血,但众所周知,血液来源非常困难!而且不能长久保存,输血之前还需鉴定血型和配型。因此,寻找理想的代用品成为人们的梦想。20世纪50年明胶代血浆受到重视,且符合血浆的条件和性质,国外已大量使用,我国正在积极推进其产业化。国外明胶类代血浆有脲交联明胶、改性液体明胶和氧化聚明胶3种。国内有氧化聚明胶、血安定(Gelofu-sine)海星明胶和血代(Haemaccel)。(5)水凝胶。水凝胶是一些由亲水大分子吸收了大量水分形成的溶胀交联状态的半固体(三维网络),能保持大量水分而不溶解,具有良好的溶胀性、柔软性和弹性,以及较低的表面张力等特殊性质。交联方式有共价键、离子键和次级键(范德华力、氢键等)。水凝胶是高分子凝胶中的一类,可分为物理凝胶和化学凝胶。为改善性能需对天然高分子与合成高分子进行共混复合制备新型水凝胶(互穿网络水凝胶),现已取得很大进展。制成的复合材料有胶原/聚甲基丙烯酸羟乙酯水凝胶、胶原/聚乙烯醇水凝胶、胶原/聚异丙酰胺水凝胶、胶原/壳聚糖水凝胶等。(6)敷料。敷料是能够起到暂时保护伤口、防止感染、促进愈合作用的医用材料。有普通敷料(常用植物纤维纱布)、生物敷料(胶原蛋白及其改性产品以及左旋糖酐、壳聚糖、淀粉磷酸酯等)、合成敷料和复合敷料等四种。开发使用的品种有海绵型敷料、胶原膜敷料、凝胶敷料。(7)人工皮肤。

人工皮肤是在创伤敷料基础上发展起来的一种皮肤创伤修复材料和损伤皮肤的替代品。其制备方法采用复合与交联法,一是提高胶原的机械强度;二是胶原与其他天然高分子进行杂化改善机械性能和生物活性。(8)人工血管。人工血管是近年来组织工程(一门多学科的交叉科学)研究的重点之一。当今临床应用的人工血管主要是人工合成材料制成的,最早是涤纶纤维编织的人工血管,但只能对大口径血管有较短的替代作用。后来开发聚四氟乙烯(PTFE)、聚氨酯(PU)、膨体聚四氟乙烯(ePTFE),并采取多种方法进行改性,以适应血管植入的要求。此外,还有生物降解材料如聚乙醇酸(PGA)、聚乳酸(PLA)、聚乳酸异构体(PLLA)等。(9)人工食管。分为两种,一种是用自身的其他组织或器官(如结肠、空肠、胃、胃管和游离的空肠等)加工而成,现已广泛应用于临床,优缺互见;另一种是人工合成材料加工而成,比如塑料管、金属管、PTFE管、硅胶管等,效果均不理想。最早制成使用的聚乙烯(PE)管,此后发展了PTFE、硅橡胶、硅胶涂覆的涤纶编织管(PET)、碳纤维管等。近年以来,使用聚乙烯醇(PVA)、PLA降解塑料。用降解塑料制作无细胞支架的人工食管、组织工程化食管等。(10)心脏瓣膜。分为机械瓣膜(金属瓣)和生物瓣膜。心脏瓣膜支架材料有可降解合成高分子和生物高分子。可降解合成高分子有PLA、PGA及二者共聚物(PGLA),此外还有聚β—羟基烷酸酯、聚羟基丁酸酯(PHB);生物高分子材料有胶原、纤维蛋白凝胶、去细胞瓣膜支架等。(11)骨的修复和人工骨。目前仍以金属(不锈钢、钴铬合金、钴镍合金、钛合金)为主;高分子材料,诸如PTFE、聚硅氧烷、高密度聚乙烯(HDPE)、陶瓷(结晶氧化铝、羟基磷灰石)以及复合材料。胶原以其独特的性能成为不可或缺的生物材料,在骨修复中起举足轻重作用。①在组织引导再生术中(guidedtissueregeneration,GTR)能起到“诱导成骨”、“传导成骨”,实现再生修复和骨愈合的作用。②组织工程化骨组织的构建。包括三个方面:一是寻求能够作为细胞移植与引导新骨生长的支架结构作为细胞外基质(ECM)的替代物;二是种子细胞;三是组织工程骨的组织还原(骨缺损修复)。(12)角膜与神经修复。角膜胶原膜和组织工程化角膜;人工神经支架采用胶原、胶原/壳聚糖或胶原/糖胺聚糖等。(13)药物载体。药物载体由高分子材料充当,大多数为传递系统,其主要成分是胶原和明胶。有胶原膜、胶原海绵、药用胶囊和微胶囊和丸剂与片剂。(14)固定化酶载体。胶原可作为细胞或酶的载体,其特点:①胶原本身是蛋白质,对酶和细胞的亲和性是其他材料不可及的;②胶原蛋白成膜性好,可制成各种酶膜;③胶原蛋白肽链上具有许多官能团,诸如羧基、氨基、羟基等,易于吸附和固化。胶原蛋白有很好的生物相容性,在体内可被逐步吸收,交联接枝共聚后赋予了材料良好的物理机械性能,且可在体内长期保存。广泛应用于人体的各个部位。生物医学材料在人体的应用部位,详见图1[3]。

功能高分子材料的特点篇5

论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。

人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。

一、高分子化学的内涵

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹性功能材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

参考文献

功能高分子材料的特点篇6

开创“理”与“据”

余灯广是个“杂家”,他本科学习的是化学工程,博士时期学习的是生物医学工程,而到了博士后,他则选择了纺织科学与工程专业。这期间,余灯广还在湖北双环化工集团公司工作了10年,这段经历让他能从一个更宽广的视角来看待科研。2011年,余灯广几经思索,决定踏入材料科学与工程研究领域,上海理工大学则是这段新旅途的起点。一上路,余灯广就把关注点放在了微纳米材料制造技术上。在他眼中,一种新型微纳米材料制造技术,往往意味着能创造更多的新型结构微纳米材料及实际应用。

极端条件(超高温、高压、超磁以及高电压)下物质的相互作用与理化性能表现,和微观层次物质之间的相互作用是目前人类认识世界、获取知识的两座富矿。“与此相应,在极端条件下制备功能物质、于微观层次操控分子,及用微纳米体系制备功能材料是人类改造世界、获取新方法的先进技术。”在该思路的指引下,他主持了国家自然科学基金委员会与英国皇家学会合作交流项目――“三级同轴电纺制备零级药物缓控释给药系统研究”,取得了新的突破。

虽然三级同轴电纺在基本原理上与单射流电纺没有差别,也就是直接应用高压静电场力对流体进行单步拉伸固化,从而获得纳米纤维。但实际上其实施难度和涉及的经验与知识大不相同。“在单射流电纺中,Taylor锥后的直线射流直接拉伸弯曲或者发生分裂,对其影响并不大。”余灯广介绍道,而在同轴电纺和三级同轴电纺过程中,Taylor锥后的直线射流若是发生分裂,就无法获得所需要的多层纳米结构。此外,在溶剂环流三级同轴纺的实施过程中,如果外层环流溶剂发生分裂,将毁坏纤维收集板上的纳米纤维毡。

“要想高效准确地调控三级同轴纺过程,需要对每种流体在高压电场下的表现与行为,及它们在三级同轴纺的过程中具有的匹配性和协调性,有一个比较清晰的认识。”因此,余灯广带领团队对这些流体的基本理化性能、以及这些理化性能与它们在高压电场下行为之间的关系进行探究,最终发现了芯鞘纳米纤维的三级同轴电纺成纤机理,使得制备结构特征明确、性能优良的三级芯鞘纳米纤维“有理可循”。

通过研究,余灯广还设计了多种应用三级同轴纺制备的多层次纳米结构(药物梯度分布、控释材料梯度分布、芯鞘纳米药物储库、薄层包裹结肠靶向药物储库等),将这些结构特征与纳米纤维的理化性能和功能表现进行有效关联,对稳定可靠地制备出功能高度重现的纳米给药系统尤为关键。“这些微观结构主要特点包括:每层厚度以及彼此之间比率、药物或材料梯度大小与方向、每层的成分c组成、包裹的厚薄以及致孔剂的用量等。”余灯广介绍说,他将这些特点参数结合药物和聚合物基材的理化性能(如极性、水溶性、溶蚀性能、降解性能)进行实验分析,然后通过大量试验数据对其进行总结归纳和分析演绎,建立了三级芯鞘纳米纤维的“微观结构特点―理化性能状况―所需功能表现”之间的内在关联、使得多层结构型纳米纤维状药物零级控释给药系统的研究开发“有据可依”。聚焦“自组装”

目前,余灯广正在进行“基于电纺芯鞘纳米纤维的分子自组装原位协同调控研究”项目研究。在该项目中,他选用了一些药物活性分子和药用载体材料,并使用了一些药学常规方法,分析表征自组装纳米体系的活性成分包裹率和对活性成分的缓控释效果,这样做的目的是应用它们作为自组装基元物质模型,并通过它们来研究应用电纺芯鞘纤维为模板调控分子自组装原位构建功能纳米体系的可行性、有效性和实用性。

“我们的策略为先通过top-down同轴电纺制备聚合物基芯鞘纳米纤维,再以纤维为模板、利用其直径的纳米尺度限定作用和芯鞘结构的模板作用、在一个微观区域内调控自组装基元分子的转运与接触,实现一个相对可控的bottom-up分子聚集组装过程。”余灯广介绍说,其具体的研究内容包括:发展同轴电纺工艺(溶剂环流三级同轴纺、稀溶液环流同轴纺、升温同轴纺);制备新型人工自组装材料,即具有成分空间分布特征、多组分复合的水溶性聚合物基芯鞘纤维;通过“溶解―疏水”作用启动分子自组装构建纳米体系;研究芯鞘结构纤维电纺成型机理及其对分子自组装的调控机制;阐明复合纤维组成成分、结构特征和环境因素等对分子聚集组装的原位协同调控机理。若是项目研究成功,将为建立多组分可控自组装提供新方法,为构建新型人工自组装功能纳米材料开发新途径,并会发展出功能导向的自组装新体系和新技术。

至今为止,该在研项目已经发表SCI研究论文25篇,获得中国发明专利授权8项。他说:“等这个项目完成后,我将在此基础上开发一系列新型人工自组装功能纳米材料,和相关新型纳米给药系统,那时候将会进行相关对比研究以及动物试验。”

    【公文范文】栏目
  • 上一篇:物业年度工作总结(29篇)
  • 下一篇:医院耗材管理制度(6篇)
  • 相关文章

    推荐文章

    本站专题