高中作文网

系统设计(4篇)

时间: 2023-11-14 栏目:写作范文

系统设计篇1

2面向生物工程的微操作机器人系统大多数机器人是按照给定的程序做简单重复的动作(如焊接、装配、搬运等),不需要太强的智能。而对于微操作机器人来说,情况就有很大不同。因为作对象十分微小,操作人员不可能十分清楚它们的精确位置,况且外界环境的变化使得它们的相对位置不定,微观世界里的物理法则及力学特性与宏观世界也大相径庭,这就要求机器人有很强的自动识别能力和决策能力。同时,温度变化、机械振动、噪声波动、机械蠕变等不稳定因素扰动,以及非线性微动特性、传递累积误差的影响,也使得微操作机器人必须具有很强的自我调整能力(即自我实时标定及补偿能力)。因此微操作机器人必须与其它仪器设备组合成一套光机电高度集成的系统,方能进行显微操作。北京航空航天大学机器人研究所正在研制的用于细胞操作的微操作机器人系统包括倒置生物显微镜、粗动平台、左操作手、右操作手、摄像头、图像处理单元、控制系统、人机交互接口等。本系统采用全局闭环控制方法,即将显微视觉作为反馈控制源参与伺服控制形成视觉伺服反馈控制系统。系统的具体运作方式解释如下:活体细胞或染色体悬浮在培养液内,左右微操作机器人对称地安装在显微镜机架上,毛细玻璃管与毛细玻璃针等操作工具作为机器人的末端执行器(毛细玻璃管用于捕捉与固定细胞,毛细玻璃针用于细胞的切割、注射等)。首先,在显微视觉伺服的控制下,玻璃管、玻璃针及作对象将自动地调整到显微镜的焦平面内。左机器人完成活体细胞的捕捉与固定,右机器人完成切割、注射等精细操作。整个操作过程都在显微视觉的监视下完成,即图像处理单元实时地处理分析采集的图像信息(如细胞、玻璃管、玻璃针之间的相对位姿,细胞核在细胞内的位置等),并变成控制信号输送给控制器,机器人在控制器的命令下实时地对细胞进行追踪、捕捉、注射、转移等,直至完成整个操作过程。在进行显微注射时,外源基因或染色体或蛋白质的注射量的多少也是在显微视觉及注射装置的共同监控下完成的。整个操作过程通过显微镜、摄像头、监视器实时再现出来,供科研人员进行分析研究。在出现意外的情况下,操作者可根据图像信息,通过人机交互接口对系统进行遥控操作。作对象的选取是由操作者通过人机交互接口完成的。

在研制本系统过程中,已取得以下阶段性成果:(1)利用螺旋,对微动并联机构的型综合进行了较深入的,并给出了几种并联机构型综合的新。(2)选用Delta三自由度并联机构作为微操作机器人机构,并结合微操作的特点,对其进行了运动学、工作空间优化、误差分析及动态特性分析。作为微操作系统的核心部分,微操作机器人机构应具有外形小、工作可达域相对较大、驱动精细、有很高的定位精度与精度稳定性、良好的动态特性等特点。Delta微动并联机构基本迎合了这些要求。它的外形尺寸为100mm×100mm×100m,工作空间约为500μm×500μm×400μm,运动分辨率约为80nm。(3)在多年探索研究及广泛调研的基础上,出了一些对构筑微操作机器人系统有指导意义的设计原则。它不单适用于面向生物工程的微操作机器人系统,对构筑其它领域的微操作机器人系统也有一定的价值。(4)将显微视觉作为反馈控制源参与伺服控制形成视觉伺服反馈控制系统,使显微操作自动化程度及操作精度大大提高。操作者只需用鼠标轻轻一点作对象(细胞、染色体等),系统将自动完成显微操作,如基因注射、细胞切割等。(5)机械加工、装配精度低于系统综合精度的特点导致了系统标定的困难性,而各子系统向参考坐标系转换的误差,以及由温度、振动、蠕变等因素造成的误差的随机性更加剧了离线标定的复杂性。本课题针对视觉伺服控制的微操作机器人系统的特性,提出新颖的欠参数标定法。(6)本项目拟采用多套智能控制算法,如基于视觉校正的模糊自适应控制方法、基于视觉的模糊预测控制方法,实现基于显微视觉全局闭环的机伺服自动协调作业。这些方法在初始模型不精确的情况下,也能保证快速、准确地定位。

3值得注意的若干问题微操作机器人系统的构筑比机器人的设计更为复杂,涉及的研究领域也更为广泛。在构筑“面向生物工程的微操作机器人系统”过程中,以下问题应引起特别注意。这些问题可以作为构筑微操作机器人系统的设计准则。(1)莫奢望能构筑一套“万能机器”。由于细胞或染色体是活性的,它的形状颜色各有不同,研制出的微操作机器人系统不可能完成所有的显微操作。部分操作可能更适合于采用电学、化学、甚至手工方法完成。(2)微操作机器人系统的各单元应刚性连接。为了减少积累误差、增强系统抗振能力、减少标定测量次数,系统各单元应以显微镜视野为分布中心刚性地连接一起。(3)左右微操作手的工作空间应比显微镜的视野大,并且包围它。显微镜的视野是一定的,为了充分利用有限的空间,避免机器人在工作空间边界附近可操作性及灵活性差的情况出现,左右微操作手的工作空间应该比显微镜的视野范围大。系统安装调试时,机器人及相关周边设备应以视野中心分布,保证操作工具的端部与视野中心重合,并在视野内运动操作。这种安装组合方式我们称之为“运动集中型”微操作机器人系统。(4)微操作机器人的理论工作空间应比其实际工作空间大。数学模型的精确性、驱动器的性能、机构材料的弹性变形等因素的存在,使得微操作机器人的实际可达域要比理论可达域小。在构筑机器人系统时,要特别注意这一点。(5)微动机构的运动链应尽量短。为了增强抗振能力、减小装配误差、提高结构刚度,系统应尽量减少运动环节。这也是并联机构在微操作领域倍受青睐的原因之一。(6)自由度过多得不偿失。理论上讲,机器人自由度越多,其操作灵活性越好。但过多的自由度也意味着控制难度的增加及成本的提高。3个移动自由度足可以应付所有显微操作,况且在微观世界里也不易实现大范围转角。(7)对用于细胞操作的微操作机器人来说,其运动速度和加速度尤其重要。对于细胞的注射、切割等显微操作来说,当微注射针或微切割刀切入活体细胞时,需要一定的力方能使细胞膜破裂。如果施加力的速度比较慢,可能导致细胞膜沿工具方向凹陷,直至刺破细胞膜。速度愈慢,凹陷愈深,对活体细胞的损害程度愈大。另外,由于培养液体的粘性及流动性,操作工具的运动使细胞沿同样的方向漂移,要使操作工具尽快捕捉到细胞,它的运动加速度愈大愈好。(8)在选择微动机构时,应尽量避免球铰出现。主要原因是铰链的加工难度太大,成本太高。(9)设置限位装置是必要的。多数微操作机构是靠材料弹性变形来实现微动的。如果材料的变形超出了弹性极限,便会断裂,因此有必要设置限位机构加以保护。(10)应慎重选择显微视觉系统硬件部分。倒置生物显微镜是整个系统中最大最重的设备。它的视野、放大倍率、机械接口、光学性能、抗振能力等都关系着系统的成败。图像处理周期慢与实时运动控制采样周期快的矛盾一直很突出。尽管研究高速图像匹配算法及控制方案是一解决途径,但选择高品质的图像处理硬件(摄像头、图像处理板等)也是必要的。(11)系统应采用使用简单的人机交互接口。数据手套、遥控手柄、虚拟现实等高级复杂的人机交互接口装置越来越多地应用于机器人系统。但运动链过长引起的积累误差对微操作机器人系统来说是个致命的问题。因此微操作机器人系统人机交互接口的选择不可过分追求复杂、时髦,应以简单、、实用为主要目的。如键盘、鼠标、触摸屏等即可。(12)应从整个系统入手提高系统精度,莫将精力过分集中于机构及驱动器上。相对于工业机器人来说,微操作机器人系统的误差来源更为复杂,更不稳定。为了提高系统精度应考虑环境因素(振动、噪声、温度等)、参数因素(杆长、关节零位角、柔性铰链的形状尺寸等)、测量因素(传感器的分辨率、非线性及标定设备的精度等)、控制和计算因素(计算机的舍入误差、跟踪控制误差、数学模型的精确程度、控制方案的选取等)、应用因素(安装误差、坐标系的标定误差等)等。(13)必需简化操作流程。活体细胞或染色体是无地漂浮在培养液里,为了使系统自动完成细胞操作,使机器人有规律、按步骤地动作,就必须简化操作流程(与工厂里的自动生产线类似)。有效的解决方法是设计专用的培养器皿或细胞矫正器(Bio-aligner,类似于生产线上的喂料器),使活体细胞整齐排列并逐个移送到指定位置。(14)微操作机器人系统对环境要求比较苛刻。有些颗粒或灰尘的体积可能比卵细胞还要大,另外活体细胞的培养对环境的温度湿度也有要求,因此周围环境的质量是不可忽视的。这一点已引起科研工作者的广泛注意。系统的抗振性能也是值得注意的问题之一。系统不但要求机构紧凑、固有频率高,还要将整个系统安装在防振平台上。

4微操作机器人系统的研究热点与难点在微操作系统研究领域,由于其本身精度的要求及微空间内独有的物理法则,微操作机器人系统的研究至今仍存在许多理论和技术难题,主要表现如下:(1)系统标定事实上单独静态地对微操作系统进行精确标定是行不通的,只有将几何标定与具有自功能的智能控制结合起来才能解决标定问题。(2)显微视觉伺服系统亟待完善就来说,多数微操作机器人只有一套显微监视系统,其操作控制方式是由操作者根据显微监视系统输出的图像,通过操纵手柄、指套、键盘等来遥控微操作机器人的运动。这套监视系统通过操作者的眼睛、大脑和手形成一个大的控制闭环,操作者的精神状态、熟练程度着整个系统的控制精度和效率,不利于提高整个系统的自动化程度。将显微视觉作为反馈控制源参与微操作机器人的伺服控制,是最佳解决途径之一。图像数据的采集和处理延时一直是实现视觉伺服控制的主要障碍。对于微操作机器人来说,这种现象更为突出。微执行器的细小尺寸及材质、微操作对象的形状逼近性、载体的透光品质、显微镜的光学性能、微操作的高精度要求、外界振动及灰尘的介入等因素,使得图像数据处理的延时更长。因此,为实现视觉实时闭环,提高控制品质与速度,研究视觉控制方案,开发具有系统自标定功能的显微视觉伺服系统是努力的目标。(3)微操作控制理论需做进一步的探讨微操作机器人系统是一个高度复杂的非线性系统,传递累积误差和超高精度微位姿实时检测的困难,造成建立精确模型设计控制方案和获得准确的手端误差信号进行反馈控制比较困难,所以系统的微运动控制精度也难以保持稳定(鲁棒性差)。尝试新的控制算法是一条可行之路。(4)微操作机器人可达域与运动分辨率之间的矛盾有待解决受高精度压电驱动单元的短行程和系统机械结构限制,微操作机器人的可达工作空间太小。虽然有些大行程的微动机器人已经出现(如液压式、蠕动式[3]、变异式、模块式、串并联式等典型机器人),但积累误差、结构复杂、运动分辨率低、控制不便等问题也随之出现。结构紧凑、大可达域、高运动分辨率、整体化结构(Totallymonolithicstructure)式的微操作机器人是设计者们追求的最高“境界”[3]。(5)微观世界的物理法则十分复杂在作对象的微观世界里,其运动学及力学特性不大服从于现有的一些物理法则,因此有些控制策略也不能机械地挪用到微操作机器人系统中。操作培养液中的细胞,不但要考虑重力作用,还要考虑浮力、流动力、布朗运动、范德华力、静电力等。如果不仔细地研究这些微观世界里的物理现象,很难构造出完美的微操作机器人系统。(6)迫切需要研究开发新型的微位移及微力传感器为了使微操作机器人系统具有较强的智能,微位移传感器及微力传感器是必不可少的。由于微观世界里的种种条件约束,现有系统中各种微力、微位移、速度、加速度传感器均未能成功地得到应用。

系统设计篇2

单片机通过串口模块将实时的土壤水分信息经ZigBee无线模块发至上位机进行显示,以便上位机进行实时监控。上位机一方面实时显示下位机传送来的实时数据,另一方面将实际测得的土壤水分含量与上位机设定的土壤下限值进行比较:当土壤水分含量低于设定值时,经ZigBee无线传输模块发送启动灌溉命令给下位机,下位机单片机系统通过驱动电路驱动水泵给田地灌溉,同时启动蜂鸣器进行报警提示。

2系统硬件设计

系统硬件设计主要分为下位机现场控制模块以及无线数传模块两部分。根据系统总体设计方案,设计思路如下:1)集中设计直流稳压电路,为整个电路中的其它部分工作提供稳定的直流电源。电路输入为市电(220V,50Hz),输出为稳定的直流5V电压。2)使用单片机最小系统设计主要控制模块,配合其它电路以满足对象控制的需要。3)湿度传感器获取田间土壤水分含量的相关数据,并经单片机实时采集显示。4)对串口通信部分进行设计,从而保证下位机现场测控模块可以与上位机(中心计算机)进行可靠的无线通信。5)设计用于测控的上位机系统,用以实时监测现场数据和控制下位机。下位机现场测控模块总体原理图,如图2所示。2.1单片机介绍AT89C51是一种带4K字节FLASH存储器(FPEROM-FlashProgrammableandErasableReadOnlyMemory)的低电压、高性能CMOS8位微处理器,俗称单片机。单片机可擦除只读存储器可反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。2.2直流稳压电源模块直流稳压电源模块主要由电源变压器、桥式整流电路、滤波电路及集成稳压电路等构成。桥式整流电路选用的是集成模块3N250,并引入集成稳压电路模块LM7805。为了表明整体电路的工作状况,在电路内接入了一个LED,如果LED亮说明电路正常工作,如果不亮则说明电路未工作。2.3土壤水分测量模块HM1500是线性电压输出式集成湿度传感器主要特点是采用恒压供电,内置放大电路,能输出与相对湿度呈比例关系的伏特级电压信号,响应速度快、重复性好、抗污染能力强。特点:尺寸小、浸水无影响、互换性好、可靠性高、漂移小;在5VDC供电时,0~100%RH型输出1~4VDC;极低的温度依赖性、比例输出、电源电压、适合3~7V供电;在长时间处于饱和状态后快速脱湿、专利固态聚合物结构、对化学品的高抵抗性、响应时间短。本设计中HM1500接法如图2所示。其1引脚接电源,3引脚接地,2引脚接单片机,25引脚用于把采集到的数据传递给单片机。2.4灌溉驱动电路固态继电器(SolidStateRelay,缩写SSR),是由微电子电路、分立电子器件及电力电子功率器件组成的无触点开关。隔离器件实现了控制端与负载端的隔离。固态继电器的输入端用微小的控制信号,可以直接驱动大电流负载。固态继电器是具有隔离功能的无触电开关,因此除具有与电磁继电器一样的功能外,还具有逻辑电路兼容、耐振耐机械冲击、安装位置无限制等特点,具有良好的防潮防霉防腐蚀性能,在防爆和防止臭氧污染方面的性能极佳。其具有输入功率小、灵敏度高、控制功率小、电磁兼容性好、噪声低和工作频率高等特点。专用的固态继电器可以具有短路保护、过载保护和过热保护功能,与组合逻辑固化封装就可以实现用户需要的智能模块,直接用于控制系统中。本系统中单片机28引脚输出高电平时,三极管Q2导通,驱动继电器导通,带动水泵灌溉。2.5显示电路LED数码管(LEDSegmentDisplays)由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。LED数码管常用段数一般为7段,有的另加一个小数点。LED数码管根据接法不同分为共阴和共阳两类。了解LED的这些特性,对编程是很重要的,因为不同类型的数码管,除了硬件电路有差异外,编程方法也是不同的。本设计采用共阴极LED数码管,采用动态显示原理。数码管动态显示是单片机中应用最为广泛的显示方式之一。每个数码管的公共极COM增加位元选通控制电路,位元选通由各自独立的I/O线控制,单片机对位元选通COM端电路控制,所以只要将需要显示的数码管的选通控制打开,该位元就显示出字形,没有选通的数码管就不会亮。在高速选通断开每个数码管的情况下,由于人眼的视觉暂留感觉,每个数码管都是静态显示。2.6通讯接口模块本设计采用串行通信,为实现远距离传输使用ZigBee无线模块。串口叫做串行接口,现在的PC机一般有两个串行口COM1和COM2。串行口不同于并行口之处在于它的数据和控制信息是一位接一位地传送出去的。虽然这样速度会慢一些,但传送距离较并行口更长,因此若要进行较长距离的通信时,应使用串行口。通常COM1使用的是9针D形连接器,也称之为RS-232接口。ZigBee是一种经济、高效、低数据速率(<250kbps)、工作在2.4GHz和868/928MHz的无线技术,用于个人区域网和对等网络[9]。由于ZigBee价廉以及低功耗的无线通信特点,一直占据着无线通讯市场。特别在无限传感器网络方面,ZigBee有着十分广泛的应用。无线数传模块采用了德州仪器(TI)公司推出的高度整合的SOC芯片CC2530方案进行模块设计。CC2530具有成本低、体积小,设备丰富且电路简单、扩展性强、而且能够胜任WSN节点的功能和作用[10]。CC2530具有一个IEEE802.15.4兼容无线收发器,RF内核控制模拟无线模块。32kHz时钟驱动睡眠定时器和看门狗定时器,并当计算睡眠时期时间时,作为MAC定时器的闸门。应用RF收发器时,必须选择32MHz晶振,确保其稳定。因此,在电路中设计了32MHz和32kHz两个晶振电路,32kHz晶振设计运行在32.768kHz,需要时间精度时,为系统提供一个稳定的时钟信号。CC2530的基本射频电路如图3所示。

3系统软件设计

系统软件设计框图,如图4所示。下位机单片机采集系统首先采集湿度传感器的现场数据,并经过无线数据传输模块ZigBee传送至上位机测控系统;上位机一方面实时显示下位机传送来的现场数据,另一方面通过与设定的土壤水分下限值进行比较,当判断得到土壤水分实时含量低于土壤水分下限时,通过Zig-Bee无线收发模块发送启动灌溉命令给下位机,下位机接收到命令后启动水泵进行灌溉,同时启动蜂鸣器进行报警提示。

4下位机与上位机通信

ZigBee无线通信是在ZigBee2007协议栈的基础上进行的。ZigBee无线网络具有自组网的功能,本系统将上位机设置为协调器,将所有的下位机设置为路由器或终端节点。在进行组网时步骤为:①由协调器建立网络;②所有终端节点或路由器发送申请加入网络的信标(Beacon)请求;③所有终端节点或路由器发送加入网络请求(AssociationRequest);④协调器对所有终端节点或路由器的加入网络的请求作出应答;⑤所有终端节点或路由器收到协调器的应答后发送数据请求(DataRequest),请求协调器分配网络地址;⑥协调器对所有终端节点或路由器的数据请求作出应答;⑦协调器将分配的网络地址发送给所有终端节点或路由器。至此,所有终端节点或路由器就已经自动加入ZigBee无线网络之中。当进行无线数据传输时,要对ZigBee设备节点进行初始化,在ZigBee2007协议栈中用结构体Simple-DescriptionFormat_t对设备节点进行初始化。在对设备节点进行初始化的时候,要对ZigBee无线通信网络的信道进行设置,设置信道就是设置经CC2530发射的无线电波的频率。由于在如今的空气中有许许多多的无线电波,包括手机、电视、收音机等,它们的频谱从几十兆赫兹到几千兆赫兹不等,这些无线电波都是以空气作为传播介质,而在我国ZigBee无线网络又使用国际通用的ISM(Industrial、ScientificandMedi-cal—工业、科学和医疗)频带。因此,ZigBee无线网络的信号有时候会被其它的无线电波干扰,在实际应用中常常会将ZigBee无线通信的信道设置为比较安静的25、26信道。当下位机采集到通过湿度传感器HM1500测量的土壤水分的数据时,调用数据发送函数AF_DataRequest()将数据发送给上位机。当数据发送给上位机后,上位机首先使用osal_msg_receive()函数从消息队列接收一个消息,然后使用switch-case语句对消息类型进行判断。之后,如果消息是数据类型,就让接收的数据与设置的土壤下限值进行比较:当土壤水分含量低于设定值时,经Zig-Bee无线传输模块发送启动灌溉命令给下位机,下位机单片机系统通过驱动电路驱动水泵给田地灌溉,同时启动蜂鸣器进行报警提示。ZigBee2007协议栈还支持定时睡眠功能,下位机节点即终端节点可以设定为每隔1h或30min测量1次土壤的含水量。这样既可以发挥ZigBee无线通信低功耗的突出优点,同时也可以延长终端节点的使用寿命。

5结论

系统设计

关键词静力学;悬链法;集中质量法;迭代法

中图分类号U6文献标识码A文章编号2095-6363(2017)11-0013-02

1问题概述

问题1:本题使用长为22.05m的锚链以及质量为1200kg的重物球。存在某海域,水深为18m。假设海水静止,在风速为12m/s和24m/s的前提下,计算钢桶、钢管的倾斜角度,所给锚链的形状,浮标吃水的深度以及浮标游动的区域范围。(ρ海水=1.025×103kg/m3)。

问题2:仍在问题1的条件下,设风速为36m/s,计算此时钢桶、钢管的倾斜角度,所给锚链的形状,浮标吃水的深度以及游动的区域范围。问:在钢桶倾斜角度小于等于5°,锚链与海床夹角小于等于16°的前提下,重物球的质量应为多少?

问题3:若海域实测水深为16m~20m,设计系泊系统,分析钢桶、钢管的倾斜角度,所给锚链的形状,浮标吃水的深度以及游动的区域范围。考虑风力、水深和水流力。假设海水速度最为1.5m/s、风速最大为36m/s。

针对问题1,首先在仅有风荷载的条件下,确立系统静力学模型。对浮标、钢管、钢桶在精力平衡条件下进行受力分析,建立平衡方程。进而利用悬链线控制方程对锚链相关参数进行求解。其中海面风速为12m/s和24m/s时,浮标吃水深度分别为0.7274m和0.7514m。解得钢桶和各节钢管的倾斜角度后,通过获得的锚链相关参数对锚链形状进行描述。由于可假设风向为任一定向,因此,确定浮标的游动区域为以静力平衡状态下系统各部件在水平方向上的投影长度总和为游动半径的圆环上。

针对问题2,基于对锚链边界条件的考量,建立集中质量法静力学模型。首先将浮标、钢管、钢管化作质点模型,对锚链按节点进行分段,分别建立静力学方程。根据第一个节点的水中质量与0的大小关系进行判断锚链的拖地情况。解得海面风速为36m/s时,浮标吃水深度为0.8302m,对应一系列其他待求变量。根据建立的静力学方程,在浮标吃水深度、钢桶的倾斜角度、锚链末端与锚的链接处的切线方向与海床的夹角的约束下,利用MATLAB编制单目标程序,找出符合条件的重物球质量取值范围为1780kg~4890kg。

针对问题3,相对于问题2,需要考虑当海水速度与风速在一定范围内,依据海水深度的约束条件,基于集中质量法的动力学模型,建立非线性微分方程组。根据查朗贝尔定理,写出惯性力表达式。在x与z方向上分别建立6个动力学方程,使用计算机软件进行求解。求解得到不同情况下钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。

2模型假设与符号说明

2.1模型的假设

假设1:静力学方法中,设水流方向与风荷载方向为定向,不随时间改变。

假设2:假设浮标轴线与水平面垂直,忽略力矩的转动效应。

假设3:假设海水中流体不旋动,无流体附加质量,无摩擦。

假设4:忽略锚链几何上的非线性特性与运动响应,假设缆索的自重沿链长方向均匀分布,由同种材料组成,在拉力作用下伸长可以忽略。

2.2模型的符号说明

:浮标的吃水深度

:浮标受到的浮力

:风的速度

:锚链张力对锚竖直方向上的分量

:第i个钢管或钢桶的拉力

:第i个钢管或钢桶与竖直方向的倾斜角度

:锚链的竖直投影长度

:锚链的水平投影长度

:浮标的游动半径

:第i个钢管或钢桶受到的重力

3问题1的解答

3.1模型的构建

浮标的重力G1可用假定的g及已知条件浮标质量m求得:G1=mg=12000N

设浮标吃水深度为h,再结合海水密度ρs,从而浮标所受的浮力B可表示为

B=ρs*g*V其中:V=π*r2*h

设连接的钢管对其作用力为T1,且T1与水平方向夹角为θ1。

再由二力平衡可得:B1-G1=T1sinθ1

F1=T1cosθ1

再对4节钢管进行受力分析。

令第i节钢管所受下一节钢管的拉力为,重力为,自身与水平方向倾角为,所受浮力为。再根据受力平衡,可列出以下方程:

Ti=[(Bi-G1+Ti-1Sinθi-1)2+(Ti-1Cosθi-1)2]1/2

θi=arctan[(Bi-G1+Ti-1Sinθi-1)/(Ti-1Cosθi-1)]

对于四节钢管,Gi均为100N,Bi均约为2.01N。对于钢桶,Gi为钢桶本身和重物球的重力和13000N。

对于锚链采用悬链线理论列出其控制方程:

y=(Ht/W)[cosh{sinh-1(tan(θ1))}-cosh{sinh-1

(tan(θb))}]

x=(Ht/W)[sinh-1(tan(θt))-sinh-1(tan(θb))]

tan(θb)=(Vt-ws)/HtVt=Ht.tan(θt)

其中,x橄挡蠢滤鞔サ椎阌肫涠ゲ慷说愕乃平距离,y为顶部端点距离海底的垂直距离。Ht、Vt为系缆张力沿水平方向和竖直方向上的分量,θb为缆索在触底点与海底水平的夹角,而θt则表示系缆顶端点与水平方向的夹角。

3.2求解与分析

对系泊系统存在如下水深条件约束:

f=h+cos(α1)+cos(α2)+cos(α3)+cos(α4)+cos(α5)+y-18

其中,为锚链竖直方向投影的长度,对在区间内取值,得关于它的函数图像后,求得零点处自变量取值。

4问题2的解答

对于浮标,钢管等静力学分析与问题1类似。进行受力分析,表示每个节点的拉力、与水平方向的夹角,并用牛顿迭代法计算。

将整段链理想化为质点弹簧系统,把锚链分成N段,则有N+1个节点,两个节点问以直线代替曲线,考虑其弹性伸长,即可认为N段线性弹簧,每段质量集中在节点上[1]。

忽略水流力的情况下,运用正交分解,对第i节点的静力平衡条件,x,z两向的静力平衡方程式如下

X方向:Tjcosγj=Tj-1cosγj-1

Z方向:Tjsinγj=Tj-1sinγj-1+wj

其中为节点j与j+l的张力,为第j段与x轴的夹角,为质点j在水中的质量,即重力与浮力的

合力。

对锚链上每一段节点进行类推分析,并考虑到节点j与j+l之间弹性伸长的长度,表达出第一个节点的水中质量为:

根据第一个节点的水中质量判断,为0是边界条件正好满足,小于0就是存在海底施加的向上的支持力,也就是与底面接触。

根据坐标投影的关系每个节点在x方向的坐标为:

在竖直方向的坐标为:

其中,A为锚链的等效截面积,E为钢材的弹性模量,是上端点在x方向的水平分力,l为每一段的初始长度。

5问题3的解答

建立二维直角坐标系,考虑第j节点的运动,设j质点的加速度在x和z方向上的分量为(,),则j质点在法向的附加惯性力为,设其在x,z方向的分力分别为,[1]。

根据牛顿第二定律,法线方向的惯性力在x方

向上:

Fnxj=mnjαxjsinγj

其中,mnj=ρ(DC2π/4)LChn为j点法向附加质量(附加质量为物体受到外力f在真空中运动时,加速度a=f/m;但物体在空气或水等介质中作同样的运动时,加速度a’

通过牛顿第二定律,求出质点j在x和z两个方向的加速度分别在法向和切向引起的惯性力的表达式及其在x,z方向的分量。

X方向的加速度引起的法向惯性力及其分量:Fnxj=mnjαxjsinγj

Xxj=FnXjsinγj=mnjαxjsin2γj

Zxj=FnXjcosγj=mnjαxjsinγjcosγj

同理,可以求解出X方向的加速度引起的切向惯性力及其分量:Fnzj=mnjαzjsinγj

Xzj=Fnzjsinγj=-mnjαzjsinγjcosγj

Zzj=Fnzjcosγj=mnjαzjcos2γj

同理,z方向也有相似的6个方程。

算出所有惯性力之后,对j质点进行受力分析,跟之前静态方程差不多,就是多了惯性力在x和z方向上用牛顿第二定律:

(Mj+mnjsin2γj+mtjcos2γj)αxj+(Atj-Anj)αzjsinγjcosγj=Fxj

(Mj+mnjcos2γj+mtjsin2γj)αzj+(Atj-Anj)αxjsinγjcosγj=Fxj

其中,为单位节点的质量,为附加质量,两个方程里含有x,z的二阶导数两个变量,可以求得x和z方向的导数:

αxj=(FxjI3-FzjI2)/(I1I3-I22)

αzj=(FzjI1-FxjI2)/(I1I3-I22)

其中,T为拉力,为角度

I1=(Mj+mnjsin2γj+mtjcos2γj

I2=(mtj-mnj)sinγjcosγj

I3=Mj+mnjcos2γj+mtjsin2γj

接着,对这个微分方程进行积分求解。

6模型的评价、改进及推广

6.1模型的评价

1)模型的优点。(1)问题1中,采用静力分析的方法,与繁杂的动力学方程相比,计算较为简洁。运用悬链线控制方程分析锚链的受力,通过离散模型和迭代的方法进行计算,算法较以实现,计算速度快。(2)问题2中,除了问题1中用到的悬链线方程,还运用集中质量法的静态分析,进行比较分析,增强了计算的准确性。(3)问题3中,本文应用集中质量法对锚链进行动力分析和计算。本文采用集中质量法对锚链的动力性能进行理论分析,并根据理论分析编程进行计算,将问题简化。

2)模型的缺点。(1)悬链线方法有过多的假设,得到是特定情形下的近似解。在实际情况中,需要考虑所有外力才能得到更为精确的解。(2)悬链式的描链用于主要用于浅海区域,在深海区这种方法不适用。(3)对系泊系统时域分析不够全面,当考虑水流力时,没有考虑到慢漂力引起的浮体纵荡和纵摇运动和动力学响应的时间历程。

6.2模型的改进

1)综合考虑节点所受到所有外力,在水中的悬链线方程中,用适当的数值模拟方法进行求解。2)本文集中质量法计算积分时采取差分法,然而有限元方法的通用性,处理不规则边界更为灵活。3)本文并未考虑实际情况中的三维运动。为了建立更符合实际的系泊系统的计算机仿真模型,应建立三自由度运动微分方程。4)动力分析中常用的还有细长弹性杆有限单元法,,只分析了悬链线模型和集中质量法,没有考虑细长杆

理论。

参考文献

[1]刘超。海洋工程锚泊系统计算与分析[D].武汉:武汉理工大学,2007.

[2]王磊。单点系泊系统的动力学研究[D].青岛:中国海洋大学,2012.

系统设计篇4

关键词:USB声卡;S3C2410;125

引言

近年来USB产品层出不穷,USB音频类在USB开发者论坛的努力下,成为一种标准的规范,USB声卡也开始在市场上悄然出现。因为USB声卡内置了DAC和有源功放,音频数据以数字方式进入USB声卡,完全杜绝了PC的内部干扰,所以,USB声卡将有可能成为现有内置声卡的替代品。本文介绍了一种基于ARM处理器的USB声卡设计。

USB声卡原理

由USB声卡数据流图(见图1)可以看出USB声卡的工作原理。在主机端播放音乐时,应用软件或驱动程序把各类音频信号转换为统一的格式,如PCM、MPEG等格式的数据流,通过主机的USB接口发送给USB声卡。声卡的USB接口接收到数据后,通过12S接口把并行音频数据转为串行,再发送给音频编解码芯片进行D/A转换,即可在音频芯片连接的扬声器中发音。录音过程和播放过程正好相反。

硬件设计

USB声卡硬件主要包括MCU和音频编解码芯片。MCU采用三星公司的处理器S3C2410,S3C2410内置FS总线控制器和USBSlaver控制器。S3C2410的12S控制器实现了一个外部8/16位立体声音频CODECIC的接口,支持FS总线数据格式和MSB.justified数据格式,并且支持DMA传输模式。

音频芯片采用UDAl341TS。UDAl341TS提供标准的12S接口,可以直接和S3C2410的12S引脚连接。另外,此芯片还提供标准的L3、麦克风和扬声器接口。L3接口的引脚分别连到S3C2410的3个GPIO输出引脚上,通过GPIO控制L3接口。UDAl341TS音频芯片集成数字化音频和混频器功能。数字化音频功能可以播放数字化声音或录制声音,因为包括这个功能,所以常把此类芯片称为CODEC设备。混频器用来控制各种输入/输出的音量大小等,在本芯片中通过L3接口进行控制。

软件设计

软件设计包括两部分:USB声卡固件程序设计和主机端Windows驱动设计。因为USB音频类设备是一种标准设备,在Windows操作系统上有标准的USB音频驱动,所以只需要开发者根据USB音频类的协议开发固件程序。

USB声卡的固件程序主要包括两部分,第一部分主要是USB通讯,第二部分实现12S接口数据传输以及数据流的缓冲区控制等。

USB通讯

USB声卡描述符

为了有效地定义出USB声卡的描述符,可先根据USB音频类协议,并结合需要实现的USB声卡功能,确定出USB声卡的拓扑图(见图2),然后再根据拓扑图和USB音频类描述符的协议,写出USB声卡的描述符。

USB声卡的描述符包括5部分,分别为设备描述符、配置描述符、接口描述符、端点描述符和字符串描述符。接口描述符是其中的难点。USB声卡的接口描述符包括两部分:音频控制(AudioContr01)接口描述符和音频数据流(AudioStreaming)接口描述符。

1.USB音频控制接口描述符。根据USB声卡的拓扑图所示,当声卡用于回放功能时,其声卡功能的控制流程,通过IT1(InputTeminal),OT3(OutTeminal)和Feature单元表示,IT1表示的是PC向USB声卡发送的音频数据流,OT3表示的是发向DAC的数据流,在IT1和OT3之间的Feature单元用于调节音量和音效功能等。当声卡执行录音功能时,USB的功能拓扑通过IT2,OT4表示,IT2表示A/D采样的音频数据流,OT4表示的是通过USB接口发向PC的数据流。USB音频控制接口的数据传输一般使用默认端点0。

在USB声卡的拓扑图中,F表示的是USB音频类的Feature单元,Feature单元的主要作用是控制音量、静音、低音等。如果在描述符中声明了Feature单元,在Windows操作系统下,控制面板中的声音和音频设备的一些功能才能使用。那么在Windows中进行调节音量等控制时,就会触发固件程序对UDAl341TS芯片L3接口的控制。

2.USB音频数据流接口描述符。因为USB音频有回放和录音两种功能,所以需要两个同步数据流接口,两个接口使用双向端点l进行数据传输。

通过USB声卡的拓扑图,可以分析出音频接口的流程和功能,从而得出USB声卡的描述符。

USB通讯的程序实现

S3C2410有5个双向FIFO端点,其中0端点是控制传输端点,其他4个端点支持批量、中断、同步传输等方式。在本系统中使用0、1两个双向传输端点。端点0执行控制传输(cONTROL),一方面传输USB协议的控制信息,例如Setup事件、握手信号、枚举信息等,另一方面传输音频控制信息,例如采样率控制、音量控制等。端点1采用同步传输方式(ISOCHRONOUS),传输时间间隔为lms,用于实时传递主机和12S之间的录音或放音数据。

根据USB协议,USB设备的任何数据传输,都由USB主机分配,然后USB设备响应相应的USB主机总线请求。S3C2410的USB控制器采用的是中断方式响应,那么在$3C2410的USB中断服务程序中要作以下工作:

USB声卡的控制传输

在主机端应用程序中,执行音量调节、静音等事件时,USB音频驱动通过默认端点0执行一个控制传输。一次控制传输主要包括两个步骤,第一步,由主机向设备发送一个建立(Setup)信息,描述控制访问的类型,设备将执行此控制访问。第二步,零个或多个控制数据信息的传送,这是访问的具体信息。根据USB音频类协议分解控制信息包,然后再根据控制信息,执行相应的操作。例如,在主机端应用程序中播放音乐前,USB声卡就会从主机端收到如下的两个包:

控制数据包401F00

根据USB音频类协议分解Setup包,可以得知,本次控制传输的作用是设置USB声卡的采样频率,并且收到的3字节控制数据信息是采样频率,即8KHz。那么在播放音乐前,必须把I2s和UDAl341TS芯片的采样频率设置为8kHz,才能和主机端保持同步。

12S总线实现方法

在S3C2410芯片中,FS接口提供三种数据传输模式:正常传输模式、DMA传输模式、传输/接收模式。本系统采用的是传输/接收模式,它具有双通道DMA功能,一方面窃取总线控制权,提高系统的吞吐能力,另一方面,可以实现同时接收和发送音频数据,即全双工模式。

在S3C2410芯片中,有4个DMA通道控制器用于控制各种外部设备,其中12S与其他串行外设共用两个桥接DMA(BDMA)类型的DMA通道。通过设置12SFCON寄存器可以使12S接口工作在DMA模式下。此模式下FIFO寄存器组的控制权掌握在DMA控制器上。当FIFO满时,由DMA控制器对FIFO中的数据进行处理。DMA模式的选择由12SCON寄存器的第四和第五位控制。

为了使USB声卡的回放和录音可以同时进行,即实现全双工,数据传输使用两个BDMA通道,通道0用于回放,通道1用于录音,因为S3C2410的BDMA中没有内置DMA存储区域,所以需要在SDRAM中分配DMA缓冲区。音频数据回放时,先由USB总线取得音频数据,写入DMA缓冲区,由BDMA控制器通道0窃取总线控制权,通过FS控制器写入12S总线并传输给音频芯片。录音采用BDMA控制器的通道1,其数据流过程和回放相反。

由于处理的音频数据量比较大,并且PC端接收/发送数据的速度和I2s处理数据的速度不能完全匹配,这就导致了放音失真或者录音丢帧的现象。为了解决这个问题,最简单易行的方法是使用比较大的环形缓存。但实际上大的缓存区需要更长的填充时间,在使用时会出现延时。为了解决延时的问题,使用环形、多段缓存机制。在这种机制下,将缓存区分割成若干个相同大小的块,并使用算法实现环形缓冲。下面以8kHz/16位/单通道音频流的播放为例说明缓冲区的操作。

USB音频类规定的USB同步传输周期为1ms,即对于8kHz/16位/单通道PCM编码的音频流,每隔1ms,USB设备就会收到一次主机传来的数据,数据包大小为16字节,为了尽量保持12S和USB传输同步,可以取16字节作为一个缓存区段的大小。当USB声卡接收到数据后,MCU先判断缓冲区中是否有空闲区域,如果没有足够缓冲区就跳过一个样本,然后再逐一把HFO中的数据复制到SDRAM的缓冲区。

因为125的DMA控制器处理数据是按段进行,每段长度为16字节,在DMA取数据前,先判断缓冲区中的数据量,如果没有足够数据(16字节),则加入静音数据,然后再执行DMA传输。

结语

    【写作范文】栏目
  • 上一篇:中国古代历史故事简介(6篇)
  • 下一篇:迎新年诗歌朗诵稿(8篇)
  • 相关文章

    推荐文章

    本站专题