教学目标:
1、体会较大数据的实际意义,能比较数的大小。
2、在描述数据的过程中,体会将某些数据单位改写的必要性,能用万、亿为单位表示大数。
3、培养同学们学习数学探索数学的兴趣。
教学重点:
探究较大数据单位改写的方法。
教学过程:
一、创设情境,学习新知。
1、师:让大家通过网络收集一些数据,在这些数据中,有的数据后面有“万”,有的“亿”,为什么要这样表示呢?今天这节课我们一起来研究。
2、出示中国地图。
3、提问:我国的陆地面积约是多少平方千米吗?
在学生回答的基础上,出示:9600000平方千米。
4、师:你还知道我国哪些省市自治区的土地面积?请说一说。
出示四个数据
(1)黑龙江省土地面积约450000平方千米。
(2)江苏省土地面积约是100000平方千米。
(3)新疆维吾尔自治区土地面积1660000平方千米。
(4)西藏自治区土地面积约1220000平方千米。
请同学们在地图上找一找,看一看,比一比。
二、结合实际背景,体会改写单位的必要性。
1、师:大家在读写这些数的时候,有些什么感受?
2、再比较分析一下课前我们收集的资料上的数据的特点,如果为了记录方便,这些数据可以怎么进行改写。
三、探究改写方法。
1、师:你知道这些数据的计数单位是什么吗?
它们是以“一”为单位,一般以“一”为单位是不写计数单位的,怎么把这些单位是“一”的数进行改写呢?
2、分小组讨论,探究改写方法。
3、观察这些数据的基本特点,从中发现改写的基本方法
9600000=960万;450000=45万
1660000=166万;100000=10万
1220000=122万;10000000000=100亿
300000000=3亿
师:为什么同样的数据要用不同的方法表示?
四、比较大小。
1、让学生思考一下,万以内的.数的大小比较是怎么比较的,并在小组内交流。
2、然后让学生用自己的方法和语言表达出来,并集体交流。
五、试一试。
1、读出下面各数,并按从小到大的顺序排列。
在排列大小之前,先让学生说说排列的方法。
2、将下面各数改写成以“万”为单位的数。
让学生说说改写的方法,然后独立完成。
3、将下面各数改写成以“亿”为单位的数。
让学生说说改写的方法,然后独立完成。
六、练一练。
1、开发大西部。
练习本题时,可以先请学生说一说我国西部各省市自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”作单位的数。有条件的学校,还可以让学生收集一些西部地区的其他数据信息,以供学生间互相进行改写。
2、海洋资源。
在练习时,可以让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。
3、把下图中的点按数的大小从小到大连接起来。
对于不同的数据比较,学生可以先统一写法,再比较;也可以直接进行比较,对于学生的不同方法,只要合理,教师都应给予肯定。
板书设计:
9600000=960万;450000=45万
1660000=166万;100000=10万
1220000=122万;10000000000=100亿
300000000=3亿
教学目标
知识与技能:
1.使学生掌握比较亿以内数的大小的方法。
2.能正确地比较几个数的大小。
过程与方法:
1.培养学生知识迁移和归纳概括的能力。
2.学生经历亿以内数的大小比较方法的形成过程,体验比较类推的方法。
情感、态度与价值观:
通过比较实际生活中的一些数据体验数学知识与实际生活之间的联系,培养学生自主学习的能力,提高学生学习的兴趣。
教学重难点
教学重点:掌握亿以内数的大小比较方法。
教学难点:能正确地比较多个数的大小。
教学工具
四年级
教学过程
一、复习旧知,知识铺垫
(一)复习亿以内数的认识、万以内数的大小比较。
1.填空。
(1)820000是()位数,最高位是()位;它与720101的位数()(相同或不相同)。
(2)101010是()位数,最高位是()位;356000左起第二位是()位,表示()个()。
(3)346000左起第二位是()位,表示()个()。
2.比较下面每组中两个数的大小。
356○12802010○1020
5693○52978064○8046
3.引导学生口答:万以内数比较大小的方法是怎样的?
(1)先看有几位数,位数多的那个数就大。
(2)如果位数相同,那就看左起第一位,如果左起第一位相同,就看第二位,依此类推。
二、合作探究,教学新知
(一)创设情境,导入新课
1.我国是世界四大文明古国之一,幅圆辽阔,山河壮丽,气象万千,物产丰富,历史文化悠久。五千年的人文创造和天开万物造就的自然景观为我们留下了景象骄人、数量繁多的名胜古迹,创造了辉煌的文化艺术,招徕各国游客,因此每年都有数以万计的有课来到我国旅游。下面我们来看一下这几个国家来我国旅游的'具体人数。
师出示课件20xx年几个国家到我国旅游的人数。(单位:人)
美国:2116100日本:3658200泰国:608000
俄罗斯:2536300印度:606500韩国:4185400
2.正确地读出上面各数。
3.板书课题:亿以内数的大小比较
4.学生同桌两人合作,在这6个国家中随意选取两个国家的人数,比较它们的大小,一人出问题,一人来比较,解答。
自学提示:试着比较一下数的大小。
5.总结比较大小的方法
归纳比较方法:位数多的数就大。(板书)
(二)初步研究新知
1.两个亿以内不同位数的数大小比较。
216110○608000
师:哪一个数大?小组内讨论交流。
小结:位数不同的两个数,位数多的那个数就__。
2.两个亿以内相同位数的数的大小比较。
608000和606500
师:位数相同情况怎样比较?小组内讨论交流。
学生小组汇报:都是六位数,就比最高位,它们最高位上都是6,就比下一位万位,万位都是0,就比下一位千位,千位上一个是8,一个是6,所以608000大于606500。
找多个学生说。
让学生说出比较的方法:
位数相同的两个数,从最高位比起,最高位上的数大的那个数就大,如果最高位上的数相同,就比较下一个数位上的数。
3.多个数大小比较
要求:根据到我国旅游人数多少,将这6个国家按从大到小的顺序排列。
学生小组内尝试。
小组内交流各自比较方法。
引导比较:分类----七位数相比较---六位数相比较
三、巩固练习
师:同学们,我们再接再厉,用最好的成绩来结束今天的学习,好吗?那下面我们进行课堂检测,看谁完成的又快又正确!
(1)比较每组两个数的大小
92504○10360050140○61340
28906○28890620300○307300
(2)按照从小到大顺序排列大小
505005005005500040005
四、教师课堂小结:
师:同学们,经过今天学习,大家有什么收获?
与我们学过的万以内数比大小的方法相比,你发现什么?
师生归纳总结方法:
位数不同的两个数,位数多的那个数就___。
位数相同的两个数,从最高为比起,最高位上的数大的那个数就___,如果最高位上的数相同,就比较下一个数位上的数。
五、布置作业:评测练习
板书
亿以内数的认识
位数不同两个数的大小比较位数多的数就大
位数相同的两个数大小比较从最高位比起,最高位上的数大的那个数就大,如果最高位上的数相同,就比较下一个数位上的数。
多个数大小比较先分级再分类比较
教学内容
课本P48~49例2及相应的“试一试”“练一练”,完成练习八的第4~6题
教学目标
1、使学生在练习的过程中进一步理解和掌握小数加减法的计算方法以及和整数加减法的关系,能熟练地进行计算;
2、进一步提高自己的计算能力;
3、在解决问题的.活动中,培养学生与他人合作的意识和能力。
教学重点难点
计算方法的正确运用
教学过程
一、复习
1、口算下列各题:
0.7+0.30.65-0.256+0.340.83-0.59.2-62+2.8
3.4-317.6+3.93.6+2.40.45+2.850.73-0.214+3.9
1.6-0.44.5+0.50.82-0.42
二、新授
1、教学例2
出示例2,指名列出算式。让学生试写竖式,明确相同数位对齐。
思考:被减数百分位上没有数,怎么办,为什么可以看作0。
2、完成P49试一试
思考:被减数的十分痊和百分位上都可以看作多少?为什么?
2、完成49页”“练一练””的第1~3题
第3题:可以结合线段图让学生说说对前3个问题的理解,在此基础上让学生独立列式计算;
根据题中的数量关系,还可以自己补充问题:问学生你还想到了什么?
三、巩固练习
完成练习八的第4~6题
1、“小小诊所”:练习八的第4题
先找出错在哪里,把错误的地方改正过来
你能把正确的结果算出来吗?
学生练习,集体订正。
2、解决实际问题:
练习八的第六题,让学生从问题出发去思考该用什么方法去做。
四、课堂
五、布置作业
教学目标
第一维目标:知识与能力目标--理解统计在数学中的意义,理解条形统计图的特点和优势;掌握条形统计图中横、纵坐标及单位的意义,能看懂统计图中的数量关系;学会用统计的方法分析生产生活中的实际问题;能够根据统计的结果分析得出相关的结论。
第二维目标:过程与方法目标--在统计的过程中要求学生能够细心运算,学习数学研究的一般性方法,体会由数字规律得到相关结论的逻辑关系,从而提高判断能力和应用数学知识的能力。
第三维目标:情感态度与价值观目标--在学习过程中充分体会数字的分布规律,体现数学的美感和对于实际问题的探究型研究方法,体会数学的魅力和奥妙,提高逻辑思维能力和辩证的研究方法。
教具
坐标纸。
教学过程
一、组织教学。
组织小同学们集中注意力,开始学习,进入到学习状态。
二、导入新课。
1.师生互动:请每一位小同学把自己的生日写在一张小纸条上,在黑板上列出春、夏、秋、冬的图表,请每一位小同学在坐标纸上画出与黑板上一样的图表,请班干部在讲台前统计各个季节生日的同学人数,老师在黑板上、同学们在坐标纸上同时完成生日的条形统计图。
2.教师讲解:做统计图时的注意事项,第一步,认真纪录每一个数据;第二步,统计每一个范围内的数据个数;第三步,在方格纸上认真画出条形图;第四步,由统计图对数据进行分析。明确横坐标、纵坐标分别代表的数学涵义及单位量的大小。
重点:细心、准确、无误、美观。
难点:对于数据的分析,比较数据之间的差别,理解最大值与最小值。
三、例题讲解。
本例题通过师生互动完成班级内同学们的生日分布条形统计图,旨在要同学们在缜密的数学思维背景下理解统计的涵义,基于一组相关数据的数理分析过程,了解通过统计的方法掌握某一数据的变化规律和内涵,进行科学的`分析。掌握条形统计图当中横坐标、纵坐标的数学意义与单位量与数据量的大小关系及单位。
四、习题巩固。
习题一:四年级举行的特色运动会,调查并统计同学们最喜欢哪些特色体育项目。
习题二:班级要设立图书角,调查并统计同学们最喜欢哪类图书。
习题三:调查并统计班级同学最喜欢的电视节目情况。
五、拓展及小结。
1.基于某一类的相关数据,我们可以进行数据的表示,本节课仅利用条形统计图作例,说明对于数据的合理表示可以得到对于数据的更有效分析,从而得出相关结论,采取相应措施,体现数学与生产生活的紧密结合性。
2.有关条形统计图的优势:体现每组中的具体数据;易比较数据之间的差别。
3.统计图有很多种,后续课堂还会学习到:扇形统计图、折线统计图,请同学们先有一个印象。
教学内容:第52-53页
教学目标:
1、使学生经历对几种事物进行排列的过程,初步发现简单排列现象中的规律,能运用规律解决一些简单的实际问题。
2、在学习中感知解决问题策略的多样性,发展数学思维。
3、在学习活动中获得一些成功体验,以激发学习信心。
教学重难点
有层次的学习活动,经历从无序到有序的思考过程,体会解决问题的'基本策略,会简单的排列规律。
教学过程:
一、拍照活动。
1、看书,知道拍照活动方式。
师:小军、小明、小红3人排成一排照相,有多少种不同的排法?什么叫不同的排法呢?
小军站第一个的不同排法:
如:小军、小明、小红(一种排法)
小军、小红、小明(另一种排法)
2、拍照。(教师当摄影师,选三位学生到讲台前)
要示:这3个同学名字分别叫ABC,请其它同学把各种排法表示出来。
(边拍边出示简笔画,并板书排列的字母。在多种方法比较中突出按一定顺序排列才能不重复也不遗漏)
3、小结。说一说你如果是拍照者,怎样才能每种情况都拍而不遗漏呢?
二、想一想,试一试。P52如果在三位小朋友中每次选两人排在一起照相,有多少种不同的排法?
(“想一想”可以引导学生分两步思考:每次选两人有3种不同选法,而每两人都各有2种不同的排法。鼓励学生采用个性化的符号表示不同的排列方法。)
三、练习。
1、“想想做做”第1题。用8、2、5三个数字能组成几个不同的三位数?(可以先引导学生把用8、2、5组成的三位数一一排列出来;再启发学生根据排列的过程,抽象出可以用“3×2”求排出的三位数的个数。)
2、“想想做做”第2题。
四个球队踢足球,每两个球队都要比赛一场,一共要比赛多少场?
(引导学生联系生活经验正确理解“每两个球队都要比赛一场”的含义。连线后,还可进一步启发学生在交流中体会其中的规律,认识到比赛可以用“3+2+1”来计算。)
3、“想想做做”第3题。
三个小朋友打电话,他们3人每两人通一次电话,一共通了多少次?如果他们互相寄一张节日贺卡,一共寄了多少张?
(着重引导学生结合生活经验体会两个问题的不同含义,感受解决问题的不同方法,加深对简单搭配的排列现象中规律的认识。)
四、总结。你学会了什么?
教学目标:
1.借助学生熟悉的事物,从不同角度对1亿进行感受,发展学生的数感。
2.经历课题研究、数学建模的简单过程,初步获得一些解决问题的策略和方法,发展学生解决问题的.能力。
3.在研究过程中,充分发挥学生的创造性,体验数学与日常生活的密切关系,认识到许多实际问题可以借助数学方法来解决,体会数学的应用价值;培养愿意与他人合作,与人交流,共同解决问题的良好品质。
教学重难点
教学重点:经历课题研究、数学建模的简单过程,培养对1亿大小的感性认识。
教学难点:体会和感受大数在日常生活中的应用,进一步培养数感。
教学工具
教学准备:课件、一包打印纸、一把大米、尺子、天平、计算器
教学过程
一、复习引入
1、填一填:一个一个的数,10个一是()
10个10是();10个100是();10个1000是()。
1亿是10个(),100个()1000个(),10000个()。
2、网络数据:
20xx年中国移动电话的数量超过1亿部。
20xx年中国的网民超过1亿人。
哈雷彗星的尾巴长达1亿千米。
我国的小麦产量一直稳定在1亿吨左右。
中国移动平均每天可以净赚1亿元。............
老师:
一亿到底有多大呢?
走路的时候就在想“一亿步有多远?”
吃饭的时候就会想“一亿粒米有多重?”
发作业本的时候就会想“数一亿本练习本要多少时间?”............
二、新知探究
(一)数一数。
1、质疑:出示一大堆本作业本场面让学生直接数【疑惑:数不了】
2、解惑:讨论怎么办?【化难为易】
问题——数作业本要花多少时间?
材料——作业本,计时器
步骤——先测出数1本(10本)所需的时间
再推测出100本,1000本,100000本。100000000本需要的时间。
过程——表格式
10本100本1000本10000本100000本1000000本10000000本100000000本
9秒()()()()()()()
算一算
合()分钟=()小时=()天=()年
小结——从现在开始(9岁)要数到18岁才能数完。
3、试一试
(二)量一量
一亿张纸摞起来有多厚?
(三).称一称。(小组合作)
1、问题
数出100粒大米,称称大约重2.5克
照这样计算,一亿粒大米约重多少克?
2、步骤
1000(粒)10000100000000
25(克)2502500000
3、结论:亿一粒大米约重2500000克。
4、运用
(1)我们全国大约有13亿人,如果每人每天节省一粒米,全国一天大约能节省多少克粮食?
(2)如果每人每天吃大米400克,这些节省下来的大米可供一个人吃多少天?大约合多少年?
课后小结
三、课堂小结。
1、你知道了什么?(节约从每一粒米开始)每人每天大约吃400克大米,13亿中国人每人每天节约一粒米,大约够一个人吃(81250)天≈(223)年。
(积少成多,积沙成塔)喜马拉雅山高约88848米,一亿张白纸叠在一起比喜马拉雅山都还高!......未知的世界等待你去发现!
2、你学到了什么?(化难为易)
课后习题
3、你还想知道什么,请用课堂上的方法和步骤继续研究。并将你收获到知识做成手抄报进行展示。
板书
一亿有多大
设计说明
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。
课前准备
教师准备多媒体课件
学生准备三角板
教学过程
⊙复习导入
师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)
师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)
师:这四个角一共是多少度?(360°)
师:你是怎么算的?(90°×4=360°)
师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的这三个角叫做三角形的内角。
师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)
设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。
⊙探究新知
1.探究特殊三角形的内角和。
师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的三角形)
师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)
明确:把三角形三个内角的度数合起来就叫做三角形的内角和。
师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)
师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)
2.探究一般三角形的内角和。
(1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)
(2)操作、验证一般三角形的内角和是180°。
师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?
①小组合作,探究验证方法。
师:请每位同学先独立思考,然后把你的想法在小组内交流,看一看哪个小组想出的方法最多。
②交流汇报。
预设
组1:我们小组用量角器把三角形的三个内角的度数分别量出来,再加起来看一看是不是等于180°。
组2:我们小组猜想三角形的'内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。
③动手操作,验证猜想。
师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)
师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。
3.得出结论。
师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)
设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。
课题:比大小(二)
内容:小数的性质
课时:1
教学准备:
教学目标:1、通过“在方格纸上涂一涂,比较两个小数的大小”的活动,经历用几何模型研究小数的过程。
2、用直观的方式体会小数的.末尾添上0或去掉0,小数的大小不变的规律。
3、在寻找小数大小的比较方法中,培养数感,获取数学学习方法。
基本教学过程:
一、一、创设问题情境
1、比较大小。1.26()2.030.23()0.31
2、0.2()0.20
二、自主探究,创建数学模型
1、思考一下,0.2和0.20谁大?你是怎样想的?
2、我们一起验证一下,在图上涂一涂,再来比一比。学生在书上涂一涂,比一比,再说一说。
3、0.2和0.20怎么会相等呢?这是不是一种巧合?
4、在下面两幅图中涂出相等的两部分,并写出相应的分数和小数。
在小组内交流你的涂法和想法。你发现了什么?
三、巩固与应用
1、第10页试一试1、2。
2、第11页练一练1。
3、第2、3题。
4、阅读。《你知道吗?》
四、总结。
这节课你发现了什么?
教学反思:学生通过图一图、比一比,发现小数的末尾添上0或去掉0,小数的大小不变这一规律。并能熟练的应用这一规律。
教学目标:
1、通过复习,牢记所有公式。
2、通过复习,发现学生以前知识中的问题,及时改正。
3、通过复习,建立知识之间的联系和区别,形成知识网络。
重点难点:
通过复习发现学生以前知识中的问题,及时帮助学生纠正,加深记忆教学目标
一、复习公式。
师:想一想你都学习过哪些运算定律和性质?
1、加法交换律:a+b=b+a
两个加数交换位置,和不变,这叫做加法交换律。
2、加法结合律;(a+b)+c=a+(b+c)
先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。
3、乘法交换律:a×b=b×a
交换两个因数的位置,积不变,这叫做乘法交换律。
4。乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)
先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。
5。乘法分配律:(a+b)×c=a×c+b×c或(a—b)×c=a×c—b×c
乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c—b×c=(a—b)×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
6。减法不变性质:一个数减去两个数,等于第一个数减去后两个数的和。a—b—c=a—(b+c)
7。商不变性质:被除数和除数同时乘或除以相同的倍数(零除外),商不变。a÷b=(a×c)÷(b×c)=(a÷c)÷(b÷c)(c≠0)(b≠0)
8。一个数减去两个数的差,等于先减去第一个数,再加上第二数,即:a—(b—c)=a—b+c
9。某个数先减去第一个数,再加上第二个数,等于某数减去这两个数的差:a—b+c=a—(b—c)
二、总结
这些定律和性质,大都可以推广,加法交换律结合律:推广到多个数相加。
乘法交换律结合律:推广到多个数相乘。
乘法分配律:推广到几个数的和或差乘以(或除以)一个数。
请同学们再记一下公式。
三、解题思路。
公式记熟了,遇到简算题,选择合适的方法是关键。(板书:方法是关键)
一般来说,连加算式中,应用加法交换律和结合律;连乘算式中;应用乘法交换律和结合津;在除法算式中,应用商不变性质;连减或加减混合算式中,应用减法的性质。
四、巩固练习
1、判断下面简算各题是否正确。
(1)99×4.4(2)45÷2、5
=(100+1)×4.4=(45×4)×(2、5×4)
=100×4.4+1×4.4=180×10
=440+4.4=1800
=444.4
(3)25×(0.4×9)
=25×0.4+25×9
=10+225
=235
2、用简便方法计算下面各题。
(1)13÷2、5(2)3、2×12、5×25
(3)(44×4)×25(4)999×9
教学反思:
这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,相互探讨。在这个过程中,学生完全是学习的'主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。
教学内容
教材第38、第39页的内容及第41页练习十的第1~5题。
教学目标
1.引导学生掌握小数的性质,能利用小数的性质进行小数的化简和改写。
2.提高学生的动手操作能力以及观察、比较、归纳、概括的能力。
3.培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
教学重难点
重点:理解并掌握小数的性质。
难点:理解并归纳小数性质的过程。
教学准备
多媒体课件。大小相等的方格纸。
教学过程
一、引入质疑
1.看卡片读数。
(1)师出示数字卡片8,让学生读数并说出它所表示的意义。然后在8的后面添上一个0,让学生读数并说出它所表示的意义。再添上一个0呢?
(2)接着从8000的末尾去掉一个0,让学生读数并说出它所表示的意义。再去掉一个0,让学生读数并说出它所表示的意义。再去掉一个0呢?
(3)通过刚才的观察,同学们发现在整数的末尾添上一个0或去掉一个0,整数的大小发生变化了吗?
2.情景引入。
(1)师:一把小刀的价格是0.8元,用卡片出示小数0.8,让学生读数并说出它所表示的意义。现在老师要调价了,用卡片出示小数0.80,让学生读数并说出它所表示的意义。同学们两个价格哪个贵一点?为什么?
(2)通过刚才的观察,同学们发现在小数的末尾添上一个0或去掉一个0,小数的大小发生变化了吗?
(3)是不是所有的小数都符合这一规律呢?(板书:小数的末尾添上一个0或去掉一个0,小数的大小不变?)今天这节课我们来一探究。
二、探索新知
1.探索验证1。
(1)用微课展示比较0.1m、0.10m和0.100m的大小。
(2)得出结论:0.1米=0.10米=0.100米
(3)你发现了什么规律?同桌先说一说。
生:在小数的末尾添上0或去掉0,小数的大小不变。
师:是不是所有的小数都有这样的'性质呢。让我们再一起来验证一下。
2.探索验证2。
(1)以0.3与0.30为例,比较他们的大小。
谁能说说0.3表示什么意思?0.30又表示什么意思?在图中怎样表示呢?
(学生动手在准备好的大小相等的方格纸上涂色。)
师:涂色后,你发现了什么?
生:涂色后,发现涂色部分同样多,也就是一样大。
这两幅图有什么相同和不同的地方?
(份数不同,正方形的大小和涂色部分的大小相同。说明0.3=0.30,只是它们的意义不同。)
(2)学生自主举例,动手涂色验证两个小数的大小。并说一说从中得到了什么结论。
(3)师:同学们,你们真了不起,通过动手操作验证得出这个性质,这就是我们今天的学习内容--小数的性质。(板书课题,并课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3.讨论探究。
(1)出示小数105.0900,让学生读数并讨论在小数里,除末尾的0外其他的0可以去掉吗?
(2)练习(课件出示)
4.小数的化简。
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试吗?
(课件出示练习)
5.小数的应用。
师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数写成小数的形式,这就是小数的改写,下面我们来试一试吧。(课件出示练习)
三、巩固新知。
1.给下面的物品加上标签(以元为单位,用两位小数表示。)
(课件出示)
2.判断。(对的在括号里画“√”,错的画“?”)(课件出示)
(1)12.7米改写成三位小数是12.007米。()
(2)在一个小数的末尾无论添上多少个0,小数的大小都不会改变。()
(3)小数的各部分添上0或者去掉0,小数的大小不变。()
(4)3.7与3.700的大小相同,计数单位也相同。()
3.用数字3、2、0、0,根据要求写小数。(课件出示)
(1)可以去掉一个0但不改变大小的小数。
(2)可以去掉两个0但不改变大小的小数。
(3)1个0都不能去掉的小数。
(4)去掉0后不改变大小而且变为整数的小数。
四、课堂小结。
通过本课学习,你有哪些收获?
五、作业。
课本练习十3题,4题,5题。
板书设计:
小数的性质
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变