一、教学内容:
人教版实验教材三年级下册108页及练习二十四1、2题
二、教学目标:
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。
2、使学生解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
三、教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的实际问题。
四、教学过程:
一、创设情境,导入新课
1、脑筋急转弯:有两个妈妈和两个女儿一同去看电影,却只买三张票,这是怎么回事呢?【课件演示】
2、同学们真棒!很快就帮老师解决了这个难题,其实在我们的生活中还有很多这样有趣的问题,今天老师就带大家到数学广角去感受一下这样的重叠问题。(板书课题)
3、同学们都有许多兴趣爱好,有的同学喜欢看书特别是脑筋急转弯;有的同学喜欢画画;谁来告诉老师你喜欢干什么?可三(2)班的同学喜欢参加语文和数学课外小组,老师对此做了个调查,【课件出示】请看统计表:
(1)你能从统计表上读到哪些数学信息?
(2)总人数:质疑:噢,你能说说你是怎么算的吗?
4、同学们同意吗?老师不同意这些都是第一小组的同学我知道他们14人而不是17?一起数一数,问题出在哪儿呢?(有些人好像算了两次)是不是这样呢?那么有什么好办法来帮助我们解决这个问题啊?同桌之间商量商量。
二、自主探索、学习新知
1、分类再数一数;可把两种都喜欢的分出来。【课件演示画圈】
2、那我们就一起来分一分,老师这里有两个椭圆形的圈一个是红色的表示语文小组,一个是蓝色的表示数学小组,请同学们把名单填入相应的圈中。
(1)学生独自完成。
(2)学生汇报。【课件演示】
3、现在谁来说说红色圈内表示什么?蓝色的圈内表示的是什么?那么两样都参加的同学我们分出来了吗?谁还有更好的办法?小组内的同学互相商量商量。
4、汇报:教师完成板书交集图
5、师:红色圈内表示什么?蓝色圈内表示什么?月亮状的红色圈表示什么?月亮状蓝色圈内表示什么?红色和蓝色圈相交的地方表示什么?【课件演示】
6、那现在你们会列式计算一共有几个人了吗?写在课堂练习本上。学生列式计算,师巡视。
7、学生汇报,教师板书(鼓励学生用不同的方法列式计算)【课件演示】
8、总结:大家画圈很清楚的发现了我们有的同学两样都参加了,大家最后的方法也特别多,从不同的角度去解决了这个问题,看来我们以后做题目可要多思考一下,不能像我们之前那样简单的认为就只要8+9就好了。
三、巩固练习、拓展新知
1、动物运动会
同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。五一节就要到了,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?【课件出示】学生说说动物名称。老师表扬:你们的课外知识真丰富,老师都很佩服你们。
介绍比赛项目:游泳、飞行
师:小动物们可以参加什么项目呢?学生讨论、反馈。
师:原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上)
说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。
两个圆圈交叉的中间部分表示什么?【课件出示】既会飞又会游泳的
集体订正。【课件演示】
2、【课件出示】文具店
同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗?
①文具店昨天、今天批发文具的情况
②观察图,发现了什么?(两天都批发了钢笔、尺、练习本)
③两天共批发多少种货?
(1)在集合圈中表示出来。【课件演示】
(2)学生列式:5+5—3=75x2—3=75—3+2=7
说说怎么想的?
3、作业
【课件出示】在一次考试中三年级语文和数学得优的有17人,其中语文得优的有11人,数学得优的有12人,语文和数学都得优的有多少人?
四、全课小结
1、通过今天这节课的学习你学会了什么?
2、今天这节课,你觉得谁的表现较好,好在哪里?
教学内容:
人教版《义务教育课程标准实验教科书》数学三年级上册P113页例2及P116页4-6题。
教学目标:
1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数。
2、培养学生有顺序地、全面地思考问题的意识。
3、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的过程。
4、培养学生的合作意识和交际能力。
5、感受数学与生活紧密联系,激发学生学好数学的信心。
教学重点:
自主探究,掌握有序排列的方法,并用所学知识解决实际生活的问题。
教学难点:
怎样排列可以不重复,不遗漏。
教具准备:
课件、数字卡片、头饰。
教学过程:
一、创设情境,复习迁移
师:同学们,你们喜欢看表演吗?(喜欢)今天聪聪、明明要跟我们到影剧院看表演,我们大声地喊他们出来啊!
师:好朋友见面,握握手。(聪聪、明明跟大家握手)如果全班36个同学分别跟聪聪、明明握手,一共要握多少次?为什么?(不管谁先跟谁握手,都是同是两个人)
师:对,这是我们上节课学的知识,这节课我们继续学习数学广角。(板书课题)
师:那我们赶紧进影剧院吧!(课件出示影剧院门口)
二、合作学习,探究新知。
1、情景激趣
师:(课件出现密码二字)密码?哎呀!我把密码给忘了,是379?还是739呢?我只记得这个密码是由7、3、9组成的其中一个三位数,同学们,怎么办呢?没密码可进不去啊!
2、合作交流,探讨方法
师:那么7、3、9可以组成多少个不同的三位数呢?请大家拿出数字卡片,小组合作摆一摆,摆的时候注意:
①要小组合作,共同完成。
②你用什么方法做到不重复、不遗漏。
③比一比哪组最快。
学生活动、汇报。
师:你们找出来多少个不同的三位数?谁愿意那上来给大家介绍他们组的摆法。(可多拿几个不同顺序的,然后让学生说。)
引导学生说:排列的时候,先确定百位上是3,分别交换十位和个位上的数7、9就有两种不同的排法;再确定百位上是9,分别交换十位和个位上的数3、7又有两种不同的排法,最后确定百位上是7,分别交换十位和个位上的数3、9又有两种不同的排法,合起来一共摆出6个不同的三位数,这6个三位数分别是379、397、739、793、973、937,这样按顺序排列,既不会重复也不会遗漏。
师:同学们刚才听了几位同学的方法介绍,你觉得谁的更好些?(比较发现重复、或遗漏或无顺序排列,从而引出按一定顺序排列较好)
学生发言。
3、引导学生小结:
排列时,先确定一个数位上的数,然后交换其他两个数位上的数,各有两种不同的排法,合起来都能组成不同的三位数,这样做到既不重复也不遗漏。
4、指导看书质疑
师:请大家打开书本P113页例2,边看书边自己说说书本上是怎么摆的?
学生活动
师:谁看懂书本上的想法,给大家讲一讲。(强调方法)
师:密码到底是哪一个呢?你认为是几?好,那请大家把自己心中的密码大声地喊出来吧!(课件演示密码转动过程)
是:739,猜对的举手,yes!我们可以进去了,向前冲,嘿、嘿、嘿!
三、实践应用,开放练习
1、创设情境,完成P113页“做一做”
师:哇!这影剧院真漂亮!同学们赶快找座位坐好。看看第一场表演什么?(西游记)嘿!很熟悉。谁来说说你对“西游记”的认识有多少?
学生发言
师:同学们知道的真多,那图中的四师徒在干什么?谁来说说。(学生说大意,注意说完整)
师:你觉得xx同学说得怎样?师傅说:“交换位置,再来一张”(课件出示)那交换三个徒弟的位置可以有多少种不同的排法?
师:那请大家在小组里面排一排,照一照,并说说你是怎么排的。
小组活动
小结:引导学生说出先确定一个人的位置,再交换两个人的位置,各有两种排法,合起来一共照出6张不同的照片。
2、完成P116页第5题
师:“西游记”好看吗?下一场表演什么呢?(课件出示小红帽)这个故事你们听过吗?好,谁上来给大家讲讲。
学生上台讲故事。
师:xx同学讲故事真好听,你们有留意到屏幕出现故事中的哪些人物呢?(小红帽,猎人,大灰狼)同学们观察得真仔细。这时,扮演过猎人的小朋友说:“该让我演大灰狼了吧?”你知道他想干什么?(想变换角色,他不想演猎人,想演大灰狼了。)他们的角色还可以怎么变化?你们能帮助他们排一排吗?
学生活动
师:哪组愿意上台演一演。
学生上台表演。
师:刚才表演的同学真棒,一下子就把6种不同的角色变化都找出来了。
3、完成书本P116页第4题。
师:表演结束了,老师觉得有点饿,这样的天气去吃点什么好呢?你们想吃什么?
学生发言
师:你们的介绍也不错,不过天气越来越冷,我想吃点辣的来暖暖身子,你们怕辣吗?哦!有的怕辣,有的不怕辣,那不、怕、辣这三个字共有几种不同的排法呢?请大家用练习本排一排,再读一读看一共有几种读法。
学生活动,学生汇报。
师:不怕辣的同学,放学后可以建议你的父母去吃一顿麻辣火锅。
四、拓展延伸,提高能力
师:在回来的路上聪聪、明明要考一考我们。我们看题目。(课件出示题目)请拿出数字卡片动手摆一摆,要注意可以随意摆放的,看一共能摆出几个不同的三位数。
师:谁来说说你找出几种不同的三位数。
学生活动、汇报,师板书。
五、全课总结
师:这节课你有什么收获?还有不明白的地方吗?
师:你觉得自己、同学和老师表现得怎样?
六、板书设计
数学广角
379397
739793
937973
教学目标:
1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。
2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重难点:
1.重点:让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
2.难点:对重叠部分的理解。
教学准备:课件,名单卡片
教学流程:
(一)创设情景,激趣导入。
(二)探究新知
1.情景引入,课件出示通知
通知
学校定于下周五举行趣味运动会,请三年级各班选拔
9名同学参加跳绳比赛,8名同学参加踢毽比赛。
校体育组
(1)了解信息。
(2)师:你觉得三(1)班选拔多少人参加这两项比赛?学生尝试回答参加比赛总人数。
2.出示名单,引发认知冲突
(1)课件出示三(1)班学生参加跳绳、踢毽比赛学生名单。
(2)学生观察,你有什么发现?总人数是17人吗?
(3)有没有什么办法能让大家很快看出哪些人两项比赛都参加了?
3.合作探究,体验过程
(1)学生小组内讨论交流,可以借助图、表或其他方式。
(2)汇报交流。
4.介绍韦恩图
(1)介绍韦恩图的来历。
(2)结合例题明确每一部分表示的含义。指生说一说。
5.想一想,可以怎样列式解答?
生尝试列式,全班交流。讲清算式的含义。
6.估计:咱们班可能选拔多少人参加这两项比赛?
(三)巩固练习
(四)全课小结这节课你有什么收获?
教学内容:
义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。
教学目标:
1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。
2.数学思考目标:
能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3.问题解决目标:
(1).能借助直观图,利用集合的思想方法解决简单的实际问题。
(2).渗透多种方法解决重叠问题的意识。
4.情感态度目标:
(1)培养学生善于观察、善于思考的能力。
(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。
教学重难点:
1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。
2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。
教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。
学法指导:
1.借图观察、分析、讨论、交流、操作。
2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。
教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。
学具准备:常规学具、彩笔、作业本。
教学过程:
一、创设情境,引入新课
1.激情导入,引出例题
师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)
师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)
师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?
设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。
三一班某小组同学“献爱心”的情况:
生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。
生2:我发现捐款的有5人,捐物的有6人。
师:你能提出一个数学问题吗?
生1:捐款的比捐物的少几人?
生2:捐物的比捐款的多几人?
生3:捐款的和捐物的一共多少人?
2.设问质疑,引发冲突
师:参加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
师:这么一个简单的问题怎么会有这么多不同的答案呢?
生:里面的同学重复了。
师:哪里重复了?(李彤和任一,课件闪动。)
看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)
师:下面请同学们分组讨论,如何去调整表格?
二、小组交流,探究新知
1.分组讨论、调整表格。(各组代表汇报、操作、展示)方案一:
师:你觉得你们组这样摆有什么好处?
生:把重复的两个同学摆在前面,能引人注意。
师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?
(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)方案二:
师:哇!你们的摆法很独特,说说你们这样摆有什么好处?
生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。
师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。
设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。
(课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)
2.圈一圈。
师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?
设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。
3.探究韦恩图
师:为了让大家看的更清楚、更直观,请看大屏幕:
(1)取消表格。
表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。
(2)捐款的移到左边,捐物的移到右边。
(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)
设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。
(4)介绍韦恩图。
师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)
设计意图:介绍课外知识,拓宽知识视野。
师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。
4.列式计算。
(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。
师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。
(2)计算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)
讨论:为什么要减2?(因为有2个人既捐款又捐物)
方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)
设计意图:发展学生思维,体现方法多样化。
三、实践应用,巩固内化
师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:
1.举一反三(4道抢答题)
2.把下面的动物填在合适的位置。
3.看图填空。
4.思维训练
三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。
四、总结质疑,自我提高
1.学生说这节课的收获并质疑
2.互相评价、共同提高(自评互评生评师师评生)
师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。
引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:
1.获得红花奖励的指哪些同学?
2.获得红星奖励的指哪些同学?
3.既获得红花奖励又获得红星奖励的指哪些同学?
4.只获得红花奖励的指哪些同学?
5.只获得红星奖励的指哪些同学?
6.获得红花奖励和红星奖励的一共有多少人?
设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。
五、作业布置,知识升华
我是小小设计师。(课后作业)
请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!
设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。
六、板书设计,凸显重点(体现学生的主体地位)
数学广角——集合
(1)活动表格(移动过程让学生经历韦恩图的产生过程)
捐款
(2)计算板演(体现方法的多样性)
方法一:5+6-2=9(人)
方法二:3+2+4=9(人)
方法三:5+4=9(人)
方法四:3+6=9(人)
答:捐款和捐物的一共有9人。
教学目标:
1、使学生借助具体内容,初步体会集合的数学思想方法。
2、运用集合的思想方法解决一些简单的数学问题或实际问题。
3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。
教学重、难点:
1、初步体会集合的思想方法。
2、运用集合图来表示事物。
教具准备:展示题
教学过程:
一、激趣引入
师:同学们喜欢参加什么课外兴趣小组?
1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢
师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)
二、互动探究
1、出示例题
三(1)班参加语文、数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
师:同学们从例题当中得到了那些信息?
师:参加语文和数学兴趣小组的一共有多少人?
1、教师根据学生的回答相机板书人数。
17人、16人、15人、14人……
师:这么简单的一个问题为什么会出现好几个答案?
师:我们一起来演示了看看你能发现什么。
2、教师请学生把名字条放到相应的小组里。出现了多余的三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。
语文小组数学小组
杨明、李芳、刘红
3、师生一起互动解决问题后,把得到的信息板书在黑板上。
4、介绍韦恩图。
5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。
喜欢语文
喜欢数学
只喜欢语文
只喜欢数学
既喜欢语文又喜欢数学
6、根据这些板书信息尝试列式。
7、学生汇报列式教师相机板书。
8+9-3=14(人)
5+3+6=14(人)
……
8、同学们现在知道参加两个兴趣小组的共多少人了吗?
9、学生选择自己喜欢的计算方法相互说算理。
10、回看学生最初汇报的语文和数学兴趣小组的人数并评价。
11、对比韦恩图和统计表请学生评价。
三(1)班参加语文、数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
语文小组数学小组
教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学
而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。
师:我们打开108页,刚才咱们学习的就是108页的内容,请同学们再看一遍还有什么不懂的吗?
三、运用知识解决问题
1、完成书上110页练习二十四第一题和第二题。
四、总结
师:今天上了这节课你有什么收获?
五、课外延伸
师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。
作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。
板书设计:
数学广角
一、教学目标:
1、理解集合圈里各部分的意义。
2、会读集合圈中的信息,会按条件填写集合圈。
3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
二、教学重点:
会读集合圈中的信息,会按条件填写集合圈。
三、教学难点:
使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学流程
一、脑筋急转弯导入:
1、两个爸爸和两个儿子去照相,可是照片上只有3个人。这是为什么呢?
2、学生各抒己见。
3、设置悬念:同学们的猜测都有各自的道理,但答案到底是什么呢?老师暂时还不想告诉你们,我相信通过下面的两个游戏,大家一定会自己找到答案的。
二、游戏体验,构建新知
1、开心转盘
请6名同学参加比赛。
介绍游戏规则:每人转动一次转盘,转盘停止后指针会停在相应的分数上,分数高者即获胜。参赛结束后把带有自己姓名的纸条贴在黑板上。游戏结束后奖励获胜的同学。
2、夹球
请5名同学参加比赛。
介绍比赛规则:学生面对面站立,一面三人,另一面两人,用小腿夹住球跑到对面交给另一名同学,依次这样做,球不落地即获胜。参赛结束后也把带有姓名的纸条贴到黑板上。
3、游戏结束了,统计:参加这两项游戏的共有多少人?
4、下面请参加这两项游戏的同学到前面来,我们来检验一下是否有11人。
请参加开心转盘的同学站到这个圈里。请参加夹球的同学站到另一个圈里。
故作吃惊状:咦,参加夹球的还差2个人,在哪呢?赶快到前面来。
5、组织同学们想办法:他们俩站在哪比较合适呢?
6、结合学生的方法,指着开心转盘这个圈问学生:你能说说这个圈里表示什么吗?那另一边呢?中间表是什么?那你数一数到底有多少名同学参加了游戏?怎样列式?
7、揭示集合:在数学上,我们把参加“开心转盘”的同学看作一个整体,叫做一个集合;把参加“夹球”的同学看做一个整体,也是一个集合。
8、板书课题。
9、介绍维恩图。
10、介绍维恩。
三、分层练习,拓展提高
1、教材105页做一做的第1题
2、教材105页做一做的第2题
3、揭晓课前脑筋急转弯答案。
四、课堂小结,延伸铺垫
这节课你有哪些收获?
一、教学目标
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断
“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
五、教学过程
(一)巧用对比,初悟“重复”
1.观察与比较(课件出示图片)
第一组;父与子
(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
第二组:小棒拼三角形
(1)3根小棒拼成的一个三角形。
(2)提出问题:摆2个这样的三角形需要几根小棒?
预设:可能会说6根,表示3+3=6(根)
还可能会说5根,表示3+3-1=5(根)
图片出示有重复情况的2个三角形。
教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?
2.思考与发现
(课件出示)把2组有重复情况的图片放在一起。
(1)提问:你发现了什么?
学生思考,回答想法。
教师要引导学生突出:
(1)“重叠”或“重复”一词;
(2)列式中“减1”的意义;
(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;
(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。
教师揭示课题,今天我们研究有重复现象的数学问题。
教学目标:
1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。
2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重难点:
1.重点:让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
2.难点:对重叠部分的理解。
教学准备:课件,名单卡片
教学流程:
(一)创设情景,激趣导入。
(二)探究新知
1.情景引入,课件出示通知
通知
学校定于下周五举行趣味运动会,请三年级各班选拔9名同学参加跳绳比赛,8名同学参加踢毽比赛。
校体育组
(1)了解信息。
(2)师:你觉得三(1)班选拔多少人参加这两项比赛?学生尝试回答参加比赛总人数。
2.出示名单,引发认知冲突
(1)课件出示三(1)班学生参加跳绳、踢毽比赛学生名单。
(2)学生观察,你有什么发现?总人数是17人吗?
(3)有没有什么办法能让大家很快看出哪些人两项比赛都参加了?
3.合作探究,体验过程
(1)学生小组内讨论交流,可以借助图、表或其他方式。
(2)汇报交流。
4.介绍韦恩图
(1)介绍韦恩图的来历。
(2)结合例题明确每一部分表示的含义。指生说一说。
5.想一想,可以怎样列式解答?
生尝试列式,全班交流。讲清算式的含义。
6.估计:咱们班可能选拔多少人参加这两项比赛?
(三)巩固练习
(四)全课小结这节课你有什么收获?
教学目标:
1.知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2.过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3.情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决相关问题的能力和兴趣。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学准备:多媒体课件、扑克牌、3个笔筒。
教学过程:
一、魔术游戏激趣导入:
1、老师这个魔术需要请1名同学来配合,谁愿意?
向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。(学生打开牌让大家看)
课件出示:至少有2张是同一花色。“至少”表示什么意思?
引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。
板演:鸽巢问题
二、合作探究
(一)列举法:
课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?
找一组学生上前实物模拟操作摆放情况。
师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?
概括得出:总有1个笔筒至少放2支笔。(及时肯定学生们的回答:你的逻辑思维能力真强)
课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:
1.分组探究,教师巡视指导。
预设学生会出现以下几种情况:(1)实物模拟(2)图示(3)数的分解
2.学生汇报,讲台展示。
3.学生概括得出:总有1个笔筒至少放2支笔。
4.小结:刚才我们通过以上方法列举出所有情况验证了结论,这种方法叫“列举法”。
(二)假设法
师问:同学们,将100支笔放99个笔筒,总有1个笔筒至少放进几支笔呢?
追问有勇气列举吗?预设:没有勇气列举
我们能不能找到一种更为直接的方法,找到“至少数”呢?
课件出示:4支笔放3个笔筒,总有1个笔筒至少放2支笔。这句话能快速得到验证吗?
1.引导学生思考:回顾下“至少”的意思,为保障每个笔筒都尽量少,不能出现某个笔筒特别多的情况,我们要把怎样分?学生尝试作答:
生:如果每个笔筒里放1支笔,放了3支,剩下的1支不管放进哪一个笔筒里,总有一个笔筒里至少有2支笔。既而教师图示。(及时肯定学生的探究能力)
2.引伸拓展:
(1)5支笔放进4个笔筒,总有一个笔筒中至少放进()支笔。
(2)6支笔放进5个笔筒,总有一个笔筒中至少放进()支笔。
(3)100支笔放进99个笔筒,总有一个笔筒至少放进()支笔。
也就是说:有n+1支笔放进n个笔筒中,总有一个笔筒至少放进2支笔。
3.小结:这种先假设按平均分,然后再分配剩余量的方法叫做“假设法”。
教师追问:列举法和假设法的优缺点是什么?
学生总结出:
列举法优点:能够做到不重复,不遗漏,结果一目了然。缺点:局限性,摆放更多笔浪费时间,效率低。
假设法的优点是:简洁、迅速解决问题,更具有一般性。
三、练习巩固,解决问题
1.5只鸽子飞进3个鸽笼,总有1个鸽笼至少飞进了几只鸽子?为什么?
2.同学们理解上面扑克牌的原理了吗?
四、鸽巢原理的由来
最早指出这个数学原理的是19世纪的德国数学家狄利克雷,这个原理被称为“狄利克雷原理”,又因为在讲述这个原理是,人们经常以鸽巢、抽屉为例,所以它往往也被称为“鸽巢原理”和“抽屉原理”。
五:板书设计
鸽巢问题
“总是”“至少”
列举法
假设法平均分
教学目标:
1、在具体情境中,使学生感受集合的思想,感知维恩图的产生过程。
2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3、培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:借助直观图初步体会集合的思想方法。
教学难点:对重叠部分的理解
教学准备:课件、课前小研究、姓名卡片
教学过程:
一、激趣导入
今天我们先一起来看一看一道有趣的数学题,请同学们拿出课前小研究,仔细看研究一,回顾下你的想法。(课前小研究第1题)
研究一:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?(先画图再列式)
这道趣味数学题有什么特点?今天我们就一起走进数学广角,来研究有重复现象的数学问题。
二、探究新知
(1)小组讨论汇报方法(课前小研究第2题)
研究二:新的学期已经过了一个多月,这段时间同学们进步特别大,像个大孩子了,又懂事又听话,上学期的暑期作业就有很多同学完成的特别好,老师要提出表扬其中语文完成优秀的同学和数学完成优秀的同学。(语9人,数8人,重复3人)一起看研究二的第1小题,小组内说一说你的想法。
你们知道老师一共表扬了多少名同学吗?你是怎么想的?能不能用图、表或其他方式清楚的展示出来?(可以先制作名字卡片,试着摆一摆,再画出来)
根据学生的汇报适时引导,提出:
语文表扬9人,数学表扬8人,为什么一共表扬的不是17人呢?怎么看出来的?
如何表示出语文、数学都表扬的同学?
(2)全班游戏验证方法
现在我们就一起来验证刚才大家的方法哪种最清楚、最直观?请老师表扬作业完成好的同学到前面来,语文表扬的站在左边,数学表扬的站在右边,你们看看应该怎么站?
3个重复的,你们站在哪?站语文那边吗?还是站在数学这边?大家帮帮他们,想一想应该站在哪儿最合适?(中间)为什么?
那左边、右边、中间分别表示什么?(左边是语文表扬的,右边是数学表扬的,中间是语文和数学都表扬的)
(3)引导出用维恩图表示
如果把我们刚才站的队伍表示在黑板上,是什么样的?谁有好方法帮忙加工一下,试图可以更清楚地看出来他们之间的关系?(指定学生黑板画)都谁是这样想的?(给予肯定和表扬)
在数学上我们把所有语文表扬的同学看成一个整体,叫做一个集合;把所有数学表扬的同学看成一个整体,也是一个集合。这就是今天大家一起研究的集合。(板书:集合)
我们一起把集合中的具体内容用这个图更清楚、直观的展示了出来,你们知道吗?像这样的图早在很多年前就有人发明了,他就是英国的数学家维恩,所以就以“维恩”来命名,叫维恩图,也可以叫集合图。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
(4)认识维恩图
我们既然能自己创造出维恩图,那你们知道图中每一部分都表示什么意思吗?(小组内先说一说,再指名汇报)
左边表示什么?右边表示什么?中间重叠部分表示的是什么?整个图表示的是什么?(左边集合表示什么?右边集合表示什么?)
(5)运用图解决问题
能不能根据你的图一眼就看出来应该怎么计算出一共表扬了多少名同学?(列式计算)独立解决,汇报交流,方法不唯一。
(9+8—3=14,6+3+5=14,9—3+8=14,8—3+9=14等,让学生在维恩图上边指边写)通过课件演示:9+8—3=14巩固重合问题的解决方法。
三、巩固练习
1、书105页做一做1
2、书107页5
3、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
四、总结提升
同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?
教学目标:
1.知识能力目标:
①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数
②初步培养有序地全面地思考问题的能力。
③培养初步的观察、分析、及推理能力。
2.情感态度目标:
①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣
初步培养有顺序地、全面地思考问题的意识。
使学生在数学活动中养成与人合作的良好习惯。
教学重点:
经历探索简单事物排列与组合规律的过程
教学难点:
初步理解简单事物排列与组合的不同
教学准备:
多媒体课件、数字卡片、
教学过程:
一、创设情境,引发探究
同学们都说喜欢去郊游,今天老师就带同学们去数学广角逛逛(揭示课题:数学广角)
师:让我们唱着歌一起出发吧!(课件播放歌曲,教师带着同学一块做动作)
二、动手操作、探究新知
1、初步感知排列
师:数学广角到了,我们先去数字宫瞧瞧,同学们看见了什么?
生:数字1和2
师:你看到这两个数字宝宝你想到了什么呢?
生1:我想到1+2=3
师:还有吗?
生2:2-1=1
师:其他同学有没有别的想法?
生3:我想到了12和21
师:有的想到加法计算、有的想到减法计算、有的还想到1和2还可以组成新的数,小朋友们真棒,说说这是一个几位数是怎样得到的?
生:有个位和十位。
师:说得很好(教师在黑板上边写)我们在十位上写上1,个位就剩下2;我们在十位上写上2,个位就剩下1,所以1和2可以组成两个两位数。这时数字3也来凑热闹了,数字3问:“我们三个数字能组成几个两位数呢?请同学们仔细的想一想,想好了把小手举好,悄悄地告诉老师。(学生想,老师走下去听意见。有说3个的,4个的,6个的)
师:说3个的你说说到底是哪三个?
生:13、32、21
师:你说是4个,你来告诉大家是哪四个?
生:13、12、23、31、32
师:说6个的来说说你找到的。
生:13、31、23、32、12、21
师(故作疑惑状):那到底谁的答案是正确的呢?老师请来了好帮手(举起数字卡片)来帮忙,请你们摆一摆,看看摆出几个两位数。比比哪组合作得又好又快。
(学生操作)
师:谁愿意起来告诉我们你们摆了那几个两位数?
有4种情况:
情况一:只摆了4个的。
情况二:摆了6个,但是杂乱无章的摆的
情况三:先选两个数字组成一个两位,然后交换位置得到另一个两位数,也摆了6个。
情况四:先把一个数字放在十位,再把剩下的两个数字放在个位。摆出6个两位数。
2、合作探究排列
师:为什么有的摆的数多,而有的却摆的少呢?有什么好办法能保证既不漏数、也不重复呢?
师:哪个小组愿意来汇报?
生1:我摆出12,再交换两个数的位置就是21,再摆23,交换后是32,最后摆13,交换后就是31,这样就不会漏也不会重复了。(生汇报,师板书)
生2:我先把数字1放在十位,再把数字2和3分别放在个位,分别组成12和13,我接着把数字2放在十位,数字1和3分别放在个位,又分别组成了21和23,最后把数字3放在十位,数字1和2分别放在个位,分别组成了31和32,这样也不会漏也不会重复了!(生汇报,师板书)
生3:我先把数字1放在个位,再把数字2和3分别放在十个位,分别组成21和31,我接着把数字2放在个位,数字1和3分别放在十位,又分别组成了12和32,最后把数字3放在个位,数字1和2分别放在十位,分别组成了13和23,这样也不会漏也不会重复了!(这种方法能想到的可能比较少)
学生汇报,老师板书
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,如果能按照一定的顺序排列,就能做到不重复,不遗漏。(板书:有序的,不重复,不遗漏)
3.感知组合
师:同学们刚才排数排得很好。老师祝贺你们(教师不自主的一边走一边伸手和同学握手)。老师和xx握了几次手?
生:一次。
师:我和xx也握了几次手?
生:一次。
师:如果我们三个人握手,每两个人握一次,三人一共要握多少次呢?
生1:6次。生2:3次。生3:4次
师:到底几次,四人小组为单位,看看每两个人握一次手,三个人一共要握手多少次?(学生活动)
(请2组小朋友汇报)
(请这2组上台表演握手)
师:两个人握一次手,三人一共要握3次手。老师现在有一个疑问,排数时用3个数字可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?
结论:两个数字交换位置可以组成新的两位数,两个人握手交换位置还是这两个人,只能算一次,所以三个不同的数字组合成两位数,能组成六个不同的两位数,而三个人,每两个人握手只能握三次。
三、拓展应用,深化探究(过渡,同学们真棒,用自已的智慧解决了问题,现在老师让大家进行一次免费抽奖你们愿意参加吗?)
1、抽奖
师:好,现在我们来抽奖了,同学们都想中奖吗?(想)我给你们透露点信息:中奖号码就是从这2、5、7、8四个数中选出的两个数组成的两位数。猜猜,什么号码可能中奖?每个同学都有中奖的机会哦。
生:猜25,28,78
师:看来,可能中奖的号码有很多个。(把你认为能中奖的号码都写出来吧)(把用这四个数能组成的所有两位数都写出来,教师巡视,“有同学写出来8个两位数,她还在继续写,看来不止8个”“你是先固定最前面一位数?”)
师:写好了吗?(请一位同学汇报)
把你认为最有可能中奖的一个号码圈起来。(学生圈)
老师选最认真的一个同学来抽奖。学生先按键一下(课件)中奖号码的最前面一位数出来了,是2,那中奖号码可能是?25、27、28。再按以一下。中奖号码是?
师:你中奖了吗?如果你中奖了,请到老师这领奖品。
2、付钱
师:现在我们去游艺宫看看!(课件:欢迎到游艺宫,门票每人5元)
同学们带钱了吗?
生:没有
师:没关系,老师帮你们先垫上。假如你身上有这么多钱(课件显示:5个一元硬币,2张2元纸币,1张5元纸币。)你会怎样付门票的钱呢?
学生小组讨论后,说不同的拿法:
生1:我拿的是1张5元的纸币。
生2:我是这样拿的,2张2元1个1元硬币。
生3:也可以这样拿,1张2元3个1元硬币。
生4:还可以这样拿,5个1元的硬币。
师:真了不起!想出了这么多种方法,(课件显示四种拿法)有重复或遗漏的吗?
生:(观察后)没有
3、搭配衣服
师:好,那我们就进游艺宫观看时装表演了。
(出示课件:欢迎到游艺宫观看时装表演,这四件衣服有几种不同的穿法呢?)
师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?
生1:一件上衣可以配两条不同的裤子,这样有2种,另一件上衣又可以配两条不同的裤子,又有两种,这样一共有4种。
师:刚才这位小朋友用衣服配裤子,有4种不同的搭配方法,你还有其他方法吗?
生:可以用裤子配衣服,每条裤子连两件上衣。也有4种搭配方法。
师:对,是四种配法(课件显示四种配法)
四、总结延伸,畅谈感受
师:同学们,由于时间关系,我们该回家了!刚才,我们去哪里玩了!数学广角。数学广角好玩吗,有趣吗,你都看到了什么?有什么收获吗?
生1:我学得真高兴啊,我学到了怎样排列数字。
生2:我也很高兴,我学到了排列时有好的方法能让我们既不漏掉也不重复。
……
师:原来生活中有这么多数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题。老师马上就要和同学们分开了,你们舍得老师吗?如果你们以后想老师了,就可以打电话给,老师电话号码是xx
生:怎么后面3个数字没有啊?
师:那就要同学们动动脑筋了,可以给你们个小提示:
(课件显示:后面的三个数是由1、2、4组成的)
猜猜看,猜对了老师的电话就会响哦!