课题:人教版小学数学四年级上册第49页三位数乘两位数的笔算
教学目标:
1.利用学生的迁移能力,总结、归纳三位数乘两位数的笔算方法,培养类比、分析和概括能力,发展应用意识。
2.让学生在探索计算方法和解决问题的过程中激发兴趣,进一步体验学习带来的快乐。
教学重点:三位数乘两位数的笔算方法。
教学难点:三位数乘两位数的算理。
教学过程:
一、复习
师:同学们准备好了吗?可以上课了吗?
生:准备好了。
师:上课
师:今天先让我们来展示一下自己的口算能力吧,请看大卡片出示的口算。
(卡片顺序出示口算题、生作答)
12×3500×715×460×70350×2
卡片出示197×5≈
师:大家看这道题的要求是什么?
生:估算
师:那约等于多少呢?
生:100
师:你是如何估算的。
生:把197看成200来估算,200乘5等于1000,所以197×5约等于1000。
师:通过刚才的口算和估算,我知道了大家的口算和估算掌握得很好,我们的笔算掌握提如何,来,做一道吧,请拿出练习本进行笔算。(教师在黑板上出示竖式45×12的竖式)
师:来,你做得最快,请你上黑板板演,请注意书写工整。
师:我发现有一部分同学做完了,做完的同学请回忆一下,两位数乘两位数的笔算乘法是如何计算的?
师:好,大家都做完了,我们一起来检查黑板上的这道题。哪位同学来评价一下。
(方案一)
生:她计算错了。
师:哪里出错了,他是如何错的。
(生具体回答)
师:你观察真仔细,老师帮他改过来。
师对板演的.学生:以后可要注意,计算要处处细心。
(方案二)
生:她做对了。
师:谁来说两位数乘两位数的计算方法。
生:先用第二个因数的个位去乘第一个因数,再用第二个因数的十位去第一个因数,最后两次乘得的数加起来。
师:你说得真清楚,我们把掌声送给她。
(生鼓掌)
二、创设情境、探究新知
师:看来大家两位数乘两位数的计算方法都掌握了,今天我们继续来研究乘法(板书:乘法)请看大屏幕。
(1)引入例1。(课件出示)
例1:李叔叔从海南乘火车去广州用了12小时,火车1小时行145千米。
师:李叔叔从哪到哪去?
生:从海南去广州。
师:乘坐什么交通工具
生:火车
师:你还知道什么?
生:12小时李叔叔可以到广州。
生:火车的速度的每小时145千米。
师:你能根据提供的信息提出一个数学问题吗?
生:海南到广州有多少千米?
师:你能列出横式吗?
生:能
师:请列出模式,不用计算。
(生列式)
师:列完式的同学想一想今天我们列的这个算式与以前学的有什么不同。
师:请一个同学告诉我你是怎么列式的?
生:145×12(师板书)
师:还有不同的列式吗?
生:12×145(师板书)
师:这两种列式都正确。
师:会计算吗,请动笔试一试吧。
(学生计算)
师:我想请一个同学说一说她计算的过程,我来板书。
(板书:145
×12
生:0
师:谁与谁乘得0。
生:二五得十,写零进一。
师:你这样说我就明白了,接着说。
生:二四得八加一得九、一二得二,一五得五……
师:五写在哪?
生:写在十位上。
师:也就是与因数的十位对齐是吗?
生:是
师:请接着说。
生:一四得四,一一得一。再把它们加起来。
师:个位是多少
生:个位是0,十位写4进1,百位6加一得7,千位上的1移下来。
师:她说得怎样?
生:她说得很清楚,完整。
生自觉鼓掌。
师:这道题的笔算过程。同学们都明白了吗?
生:明白
师:刚才说过程时,为了不打断她,我有一个问题没提,那就是那个5为什么写在十位上?谁能帮我解答?
生:这是十位上的1去乘145,乘得的145是指145个十,所以这个5要与十位对齐。
生:这次是十位上的1去乘5,一五得五,是指5个十,所以这个5应该与因数十位上的数对齐。
师:说得好,要是声音再大点就更好了。
师:计算这道题时。先用12个位上的2去乘145每一位上的数,得290,再用12十位上的1去乘145每一位上的数,得1450。最后把两次乘得的数相加。(师边说边在竖式旁边板书)145
×12
290→145×2=290
145→145×10=1450
1740→290+1450=1740
师:1450的0在竖式中为了简便就省略了。
师:刚才这样列式的(指黑板上的算式:12×145)同学,请说一说,你是怎样列竖式的。
生:列的竖式一样,也是145乘12。
师:大家都知道,两个因数交换位置,得数不变。所以可以把两个因数交换位置列出了竖式,是吗?交换位置与不交换位置来乘,有什么区别呢,我们来比一比,请看小黑板。(出示两种竖式)
师:你觉得哪种好些,为什么?
生:交换位置乘好,因为这样节约纸张。
师:还想到节约能源上去了,想得真细致。
教学内容:人教版义务教育课程标准实验教科书《数学》四年级上册第49页及50、51页相关内容。
教材分析:《三位数乘两位数笔算乘法》这节课是在学生掌握两位数乘两位数的笔算基础上进行教学的,教学中两位数乘两位数的算理和算法都将直接迁移到三位数乘两位数笔算中来。
学习这部分内容,有利于学生完整地掌握整数乘法的计算方法,并为以后进一步学习小数乘法打好基础。
学情分析:学生在三年级时已经学习过三位数乘一位数、两位数乘两位数的乘法笔算。而三位数乘两位数的笔算和两位数乘两位数的笔算相比,在算理和算法上是完全一致的。
因此,学生对算理和算法的理解和探索并不会感到困难。但是,由于因数数位的增加,计算的难度也会相应的增加,计算中就会出现各种不同的情况。
教学目标
1、知识技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
2、情感与态度目标:让学生获得运用已有知识解决新的计算问题的体会,体验成功的愉悦,进一步树立学习数学的自信心。
3、能力目标:使学生在探索计算方法和解决实际问题的过程中体会新旧知识的联系,能主动总结、归纳三位数乘以两位数的笔算方法,培养类比及分析,概括能力,发展应用意识。
教学重点:掌握三位数乘两位数的笔算方法。
教学难点:三位数乘两位数笔算时的进位。
教学过程
一、创设情境,复习旧知,导入新知
师:王大伯在北京工作,过中秋节了,他很想念家中的亲人,决定在中秋与国庆双节期间回老家一趟,他买了12斤月饼,每斤45元,请同学们算一算王大伯买月饼一共花了多少钱。
(1)、让学生理清题意,找出题中的已知量和所求量。
(2)、根据已知量和所求量列出算式
(3)、全班齐做,然后指名口答其计算过程,计算时应注意什么。
师:在回老家的时侯,他为了节约钱,决定不座飞机,座火车,当他到家时,他算了算,从北京到老家用了12小时,火车1小时行145千米。
那你们算一算从北京到王大伯老家有多少千米。
(1)由学生列出式子,师板书:145×12(刚才我们计算的是两位数乘两位,现在是几位数乘几位数了)
(2)师:这就是我们今天学习的内容。板书课题:三位数乘两位数
二、自主交流,合作探究,获取新知
(一)、估算
师:那你可以估算出145×12的大致范围吗。估算时,我们是先把一个数看成整十、整百,再进行估算。
小组交流讨论,你是如何估算的。(小组交流讨论3分钟)
师:哪位同学把你的估算过程和想法跟我们分享一下呢。
生:把145看成150,150×10=1500,150×2=300,相加等于1800。所以我觉得,大约是1800千米,但比1800小。
(一定有生可以得到)
(二)、笔算
师:这个同学很有想法哦,那他估得接近145×12的积吗。我们一起来探讨一下145×12到底等于多少。那要如何准确算出145×12的积呢。
生:用竖式计算。
师:也就是笔算乘法(板书)
师:那么要如何用竖式计算145×12的积呢。先在你们的练习本上试着算一算。
(学生尝试计算,师巡视,找二三位同学板演并说出自己的计算方法)
生
1:拆分法,145×2=290,145×10=1450,290+1450=1740
【不排除会有学生这样做】
生
2:竖式计算
(全班学生齐做,把学生做错的'几种不同情况,板书在黑板上)
师:我们一起来看看这几位同学的竖式,有什么不一样。你们觉得那位同学是正确的。
生:……
师:我们一起用计算器来验算一下积到底是多少。你算对了吗。
让板演正确的学生讲一讲“你是怎么算的”
师:那1与5相乘的积要写在哪位数位上呢。
是个位上,还是十位上。为什么呢。
生:写在十位上,因为1在十位上,相同数位要对齐
(此处,学生的表述可能不规范,可能说,“在这里的1表示的是10”,师要予以引导,得到这个之后,师可以再结合145×12=145×2+145×10,让学生明白145×12竖式的算理)
师:那列竖式计算145×12时,要先算什么。再算什么。
怎么算。
生:2乘以145,再算10乘145
师:积要写在哪里。为什么。
生:10乘145的积写在十位上,因为1在十位上,数位要对齐
师:最后写什么。
生:将两次乘积相加
师:那其他几个同学的竖式有问题吗。有的话,问题在哪里。
生:他没有乘以百位,……
(师要强调我们现在算的是三位数乘两位数,要记得乘百位,可以和45×12进行对比。
)
师:现在请同学们观察45×
12、的竖式有145×12什么不同。找出其相同点和不同点。
(三)、小结三位数乘两位数的笔算方法
(1)先用两位数个位上的数去乘三位数,得数的末位和两位数的个位对齐。
(2)再用两位数十位上的数去乘三位数,得数的末位和两位数的十位对齐。
(3)然后把两次乘得的数加起来,注意满十进一。
(四)、两位数乘两位数与三位数乘两位数笔算比较
三、仔细琢磨,细心计算,巩固新知
1、49页做一做。(4名学生上黑板板演,其余学生齐做,师巡视,辅导学困生,集体订正)
四、仔细想想,谈谈收获,归纳小结
师:今天,我们学会了什么?
生:三位数乘两位数的竖式计算
师:那现在哪个同学可以来帮我们小结一下三位数乘两位数竖式计算的步骤和要注意的地方啊。
生:先分位相乘,再将两次乘积合并相加,要注意相同数位对齐,满十进一。(此处,生的表达可能不够规范,师应给予引导)
五、作业布置
1、
2、
3、
六、板书设计
这节课,我们根据两位数乘两位数的方法,进一步学会了三位数乘两位数的方法,我们运用的就是迁移类推的办法,这是我们解决问题时经常采用的一种思路。要是让你计算四位数乘三位数或多位数乘多位数你有办法吗。你敢试一试吗。愿意动脑筋的孩子,请你们试试吧。
鼓励学生大胆的展示、交流:
1、数位对齐;
2、分位相乘;
3、合并相加;
4、满十向前一位进1,带上今天的收获,勇敢的去做这些题吧。
教学内容:
教材第1页的内容及想想做做第1~4题。
教学目标:
1、使学生在原有的基础上进一步学习三位数乘两位数的乘法计算,掌握三位数乘两位数的竖式计算方法。进一步提高学生的数学计算能力,培养概括、推理的能力。
2、培养学生的.参与意识,激发学习数学的兴趣。
教学重点难点:
学习、掌握三位数乘两位数的竖式计算的方法,理解三位数乘两位数的算法、算理。
教学资料:
例题插图、小黑板、投影仪。
教学过程:
一、创设情境
提问:学到现在,我们已经学过的乘法有哪些?
(表内乘法、一位数乘两位数、两位数乘两位数)
两位数乘两位数的计算方法是怎样的?
揭题:今天,我们就来学习三位数乘两位数的乘法计算。
二、探究互动
1、出示主题图。
学生自由读题。指名回答:从图中你获得哪些信息?
学生口答算式:144×15或15×144(师板书)
2、“144×15”与我们以前所学的乘法计算有什么不同?
3、“144×15”你会用竖式计算吗?
请你用以前两位数乘两位数的方法,在自己的本子上试一试。教师巡回指导。
4、在小组里交流自己的算法。
课题概述:
《三位数乘两位数笔算》是人教版四年级数学上册第四单元的一个重要内容。
教学目标:
1、使学生掌握三位数乘两位数的笔方法;培养学生类推迁移的能力和口算的能力。
2、使学生经历笔算乘法计算的全过程,掌握算理和计算的方法。
3、学生在自主探索,合作交流中体验成功的愉悦,进一步树立学习数学的自信心,发展对数学的积极情感。
学情分析:
三位数乘两位数的笔算是在学生学习了两位数乘两位数的基础上进行教学的,和两位数乘两位数相比,算理和算法是完全一致的。本课教学的关键就是如何引导学生把两位数乘两位数的算理和算法迁移到三位数乘两位数中来。因此,本课教学重点放在如何让学生学会三位数乘两位数的笔算上,让学生先通过新旧知识的比较,帮助学生形成笔算的技能,构建知识网络。
教学重点:
使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
教学难点:
理解“用两位数哪一位上的数去乘,乘得的数的末位就和那一位”对齐。
教学过程设计:
一、复习导入、迁移旧知
1、脱口而出
师:同学们,老师带来了几位我们的老朋友,对他们很熟悉吧,你能快速准确的说出他们得数吗?
18×4=250×2=
24×4=150×5=
6×14=230×3=
2、出示情境图:王老师来到图书馆,每套书有14本,她买了12套。王老师一共买了多少本?
(1)指名列式:14×12=
(2)估算:你能不能先估计一下,王老师大约买了多少本?
学生估算后(一般估成14×10),请你说说为什么这样估?(估成整十数,又好算,又比较接近准确答案。)
(3)讨论:14×10=140这个结果,比实际结果大了还是小了,为什么?(小了,因为把因数估小了,所以乘积也小了)
(4)出示点子图:我们把一个点子看成一本书,一套书一共14本,就是14个点子,现在大屏幕上显示12行点子,哪位同学愿意到前面指一指14×10=140在图中对应那一部分?
(5)课件演示,学生对着屏幕指出计算的`部分
(6)我们估出了其中的一大部分,还有一部分没有没有算。到底有多少本呢?你觉得可以怎样做?(用估算的那部分,加上还没有估的那部分)利用点子图直接呈现。
(7)板书计算过程14×2=28
14×10=140
28+140=168
(8)复习笔算:其实在这个时候很多同学发现14×12是我们上学期学习的两位数乘两位数乘法计算题,除了刚才我们分部的计算方法,还有没有其他算法?(列竖式板演)
(9)复习计算方法:学生独立计算,完成后重点交流两位数乘两位数的笔算方法。
学生总结,课件演示
两位数乘两位数的计算方法:
(1)、先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐;
(2)、再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐;
(3)、最后把两次乘的积加起来。
(设计意图:通过学生的回顾,对已有知识两位数乘两位数的计算方法进行复习的同时,为学习新知三位数乘两位数做好铺垫)
二、内化新知、总结方法
过渡:看来同学们这部分知识掌握得很牢固,说明大家在学知识的时候用心用脑去学,这节课我们继续发扬这样的精神,全身心地投入到学习中,好不好?
出示:李叔叔从某城市乘火车去北京用了12小时,火车每小时行145千米。某城市到北京有多少千米?
(1)理解题意分析条件:从题中你知道了哪些数学信息?(每小时行145千米,用了12小时)
师:如何解决这个问题?采用什么方法?为什么呢?
生:用乘法解决,因为这道题是求12个145,所以用乘法计算(对学生的正确回答给予肯定)
师:我们来看——出示线段图分析,理清数量关系
(设计意图:通过线段图的出示能够帮助学生更直观的理清数量关系,从而正确列出算式)
(2)列出算式,出示课题你能列出算式吗?
145×12=(千米)
(3)估算:你能不能先估计一下李叔叔乘坐的火车大约行了多少千米?
预设:学生可能会出现以下情况
估算一:把145看成150,把12看成10,150×10得1500
估算二:把12看成10,145×10得1450
让其说一说为什么这样估?
(设计意图:通过估算培养学生估算的意识,从而养成习惯在笔算中能够根据估算的结果确定准确值的范围)
(4)交流计算方法:
师:那么李叔叔乘坐的火车到底行了多少千米?请你自己尝试根据已有两位数乘两位数的经验去笔算一下好吗?算好后和你的同桌交流一下算法
生尝试计算,教师巡视,找错例
预设1:如出现错例,先请算错的同学汇报,投影展示
145
×12
290
145
435
师:他算得对吗?说说你的想法。
请学生针对这个答案进行交流
生1:我认为不对,他的数位对的不对
生2:290下面不应该用145×1,这个1是十位的1,表示1个十,是145×10,所以5应该和290十位的9对齐。
交流汇报后展示算对同学的答案,并询问:你是怎样算的,先算什么?再算什么?积写在哪?最后写什么?
145
×12
290………2乘145的积
145………10乘145的积
1740
预设2:如果没有错例都是正确的。找一名学生投影展示自己的计算过程,阐明自己的算法。
在学生汇报过程中老师适时提问:你是怎样算的,先算什么?再算什么?积写在哪?最后写什么?并重点强调第二部分的积应该怎么写,积的末尾应与第一部分积中的哪一位对齐?
生:145×1,这个1是十位的1,表示1个十,是145×10,所以5应该和290十位的9对齐。
课件演示计算过程
(设计意图:让学生尝试独立计算是为了让学生把对原来两位数乘两位数的计算方法迁移到新知中,通过全班共享,交流,自己去突破本节课的重点)
(5)验算成果
师:通过我们自己的努力,已经得出计算结果,那我们算得到底对不对呢?可以怎样验证呢?
预设:
生1:可以与估算的结果进行比较,看差距是否大?如果比较大,说明结果有问题。
生2:可以用计算器来检验是否计算准确。
(6)巩固归纳
师:通过计算我们对三位数乘两位数有一定的认识了,你们能说说计算方法吗?我们再做两道题进一步体验一下好吗?
(设计意图:这样既培养了学生语言的表达能力和归纳能力,也为总结方法做好了铺垫)
142×23214×34f
算好后指明汇报交流,并针对其中一道题进行计算过程的说明。
师:通过我们计算这几道题的过程,你们能不能自己总结出三位数乘两位数的计算方法呢?
学生尝试总结,教师归纳
三位数乘两位数的计算法则:
1、先用第二个因数个位上的数去乘第一个因数,得数的末位和因数的个位对齐。
2、再用第二个因数十位上的数去乘第一个因数,得数的末位和因数的十位对齐。
3、然后把两次乘得的积加起来。
(设计意图:通过学生借助以往学习两位数乘两位数计算法则的经验,并结合自己计算三位数乘两位数的计算过程自主梳理计算步骤,帮助学生有序地思考问题,有条理的解决问题。)
三、巩固新知
1、我来算一算:142×23=214×34=
2、我来改一改
3、赛一赛,看谁算得快又准
134×12=225×36=176×47=237×42=
师:每组选择一道题计算,计时比赛,看哪组同学计算的最快并全部作对,评为优胜组。
(设计意图:通过以上这些练习让学生在不同的形式中巩固算法,使计算更加熟练)
5、知识的应用
师:咱们能不能帮助我们学校解决问题呢?
(1)学校要为各班新购买一套百科全书。全校共36个班,每套书129元,购买这些新书一共要花多少钱?
(设计意图:通过这几道解决问题的练习,使学生感受到学习数学可以服务于生活,生活中处处有数学,并对数量关系的分析进行了练习,第三题让学生自己去提问解答,要在学生明确数量关系的基础上进行解答,是一个提升)
6、动脑筋
师:你能帮助老师解决这道题吗?
在竖式的方格里填上合适的数。
(设计意图:这道题是本节课的开放题,要在学生数量掌握三位数乘两位数的计算方法的计算上去完成,对学生是一种提升)
7、知识延伸:格子乘法(蒲地锦)的算法
四、课堂小结
师:通过这节课的学习,你有哪些收获?
学生自己总结
课件出示温馨提示:
三位数乘两位数和以前两位数乘两位数笔算方法是一样的,注意用十位去乘第一个因数积末位对齐十位,不同的就是要乘上百位上的数。(设计意图:通过学生总结本节课的收获,再次回顾三位数乘两位数的计算方法)
今天这节课,同学们运用两位数乘两位数的计算方法自己归纳总结出三位数乘两位数的计算方法,看来在学习上只要你做个有心人,会发现很多学习的奥秘,老师希望你们在学习的道路上收获更多成果,加油!
教学用具:幻灯、小黑板、口算卡片
教学过程:
一、基础练习。
1、教科书62页的第7题。
以口算卡片的形式出示算式,个别答与开火车相结合,以作到人人参与。
2、教科书63页的第8题。
(1)学生独立笔算,教师巡视。
(2)汇报结果,要求学生说明因数中间的零和因数末尾的零在笔算时的不同操作办法,教师进行演板。
3、教科书63页的第8、9题。
(1)列出原算式:63×4=
(2)改变因数,再分别计算出它们的积。
(3)利用算式进行对比。
(4)仔细观察,请你说一说哪个因数的变化了,怎样变的,积又是怎样变的。
二、提高练习。
1、出示(1)12×18=216(12×3)×(18÷3)=
请你猜一猜结果会是几?你的理由是什么?教师结合算式进行详细的讲解。
2、那么(2)(12÷3)×(18×3)=的结果是多少呢?你是怎样想的?
3、而(3)(12×10)×(18×10)=又该等于多少呢?
三、综合应用练习。教科书63页的'第11题。
1、认真读题,你知道了什么,题目给我们提出了什么要求?
2、鼓励学生从不同的角度去思考,提出多种解法。
如:用估算,430、380、407都看作400,因此400×30=12000(千克)或(400×3)×10=12000(千克)。
用笔算,430+380+407=1217(千克),1217×(30÷3)=12170(千克);(430+380+407)÷3=406(千克)把406看作400,因此400×30=12000(千克)。
四、课堂小结:通过今天的综合练习,相信大家都有一定的收获,谁来说一说。
一、教学内容:
青岛版《义务教育课程标准实验教科书》数学(五四制)三年级下册P54信息窗3
二、教材分析
这部分内容是在学生掌握了三位数乘一位数、两位数乘两位数笔算方法的基础上学习的。学习两位数乘两位数时,学生已经掌握列竖式计算对位问题的算理和算法,这些都为学生探索发现新知做好了铺垫和准备。
三、学情分析
在学完两位数乘两位数后,学生已掌握了乘法运算的基本技能。从这个角度上说,本节课所学知识,属于旧知。所不同的仅仅是运算数据增大一些。根据学生已有的这个知识基础,在教学时放手让学生通过自主探索、亲身实践、合作交流等活动,自行总结笔算的方法。
四、教学目标
1、使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法。
2、使学生获得运用已有知识解决新的计算问题的体会,感受数学知识和方法的内在联系。
3、学生在自主探索,合作交流中体验成功的愉悦,进一步树立学习数学的自信心,发展对数学的积极情感。
五、教学重点和难点
使学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,并能正确计算。
理解“用两位数哪一位上的数去乘,乘得的积的末位就和那一位对齐”。
六、教学准备:多媒体课件
教学过程:
一、复习旧知,导入新课用竖式计算。38×49=
引导学生交流两位数乘两位数的计算方法。
【设计意图】复习旧知,为学习新的计算做好铺垫和准备。
二、创设情境提出问题
1、谈话:青岛是奥运的伙伴城市,为了迎接奥运,青岛现在新建了高速公路。我们一起去施工现场吧。引出课本信息窗3的情境图。
【设计意图】借助奥运场景,让学生自己提出问题,培养学生发现问题的能力,促进学生积极主动的参与学习当中。
三、合作探究解决问题
1、解决问题:一期工程历时15个月,平均每个月修建213米。一期工程全长多少米?
(1)引导学生思考用什么方法计算?怎样列算式?
(2)鼓励学生用估算的方法解决问题。
213≈200200×15=3000
(3)列竖式计算
引导学生分析算理,在计算时应先算什么?再算什么?最后算什么?
重点说说两位数的十位数去乘三位数的个位时,积的末尾应写在哪一位上,理由是什么?
(4)运用估算进行检验。
估算的结果比实际结果怎样,为什么?
归纳总结:估算是近似值,不是精确值;列竖式计算结果精确,可以用精确值。
2、反馈练习
先估算,再列竖式计算。
287×63=206×19=
引导学生学习因数中间有0的乘法,学生独立完成,交流计算方法,集体订正。
四、归纳总结
1、小结计算方法。
对照竖式,说说三位数乘两位数的方法是怎样的?
2、边读边填。
三位数乘两位数,先用两位数()位上的数去乘三位数,乘得的积的`末尾和()位对齐,再用两位数()位上的数去乘三位数,乘得的积的末尾和()位对齐,最后把两次乘得的数()起来。
五、应用知识自主练习
1、列竖式计算。185×14=25×302=
2、解决问题
(1)从濮阳到北京的单程车票是每人185元,旅游团一共有48人。这个旅游
团的单程车票一共需要多少元?
(2)摩天轮最大载重量是5000千克,三年级学生平均体重是25千克,三年级104人可以同时乘坐摩天轮吗?
【设计意图】通过练习,让学生在已有的知识和经验的基础上,掌握系统的数学知识,培养学生应用数学知识解决实际问题的能力。
【教学反思】
一、比较好的几方面:
备课时把握住了知识的前后联系。小学阶段对整数笔算乘法的最高要求是掌握三位数乘两位数的笔算,两位数乘一位数是笔算乘法的开始,两位数乘两位数是笔算乘法的关键。因为两位数乘两位数和三位数乘两位数同是乘数是两位数的乘法,如果熟练掌握了两位数乘两位数的笔算,再恰当的利用知识的迁移,学生肯定会很快的掌握三位数乘两位数的笔算。教学中学生能积极大胆的对其他同学计算过程中存在的缺点和不足及时指正,对于问题,通过学生之间的讨论,交流得出问题的答案,学生的学习效果比较明显。有效的培养了学生认真书写乘法竖式的习惯。教学的板书做到以身作则;相同数位如何对齐以及横线的画法;要求学生按要求书写
二、不足之处
在新旧知识的迁移过程中应多引导学生说出计算方法和过程,教师说得太多,因此没能更好的引导学生发挥积极自主的学习方式。在拓展应用环节,虽然学生的思路很清晰,但给学生的展示交流时间还不够充分,有些仓促,没能给学生提供更好的条件展示自己。
三、今后改进方面
教学中复习铺势要到位,唤起学生已有的知识,关注数学知识本身的逻辑联系,充分的利用已有知识学习新知,旧知迁移效果会更好。
一、导入:
上周我们刚刚度过我国的传统节日----中秋节,大家都知道中秋节要吃月饼,你们家买月饼了吗?
李叔叔想让同学们帮他一个忙,你们愿意吗?(出示;练习题)
请同学们帮李叔叔算一算,一共花了多少钱?(独立列式计算)
回顾两位数乘两位数的方法。
二、新授
因为中秋节假期短,所以李叔叔没能回老家看望父母,他决定国庆节回老家,
为了节约,李叔叔决定不坐飞机,坐火车,从合肥到北京用了12小时,火车每小时行驶145千米,你们帮李叔叔算算从合肥到北京有多少千米?
1.结合导学案列式
2.观察45×12与145×12有什么不同?
揭示课题:这就是我们今天要学习的三位数乘两位数。(板书:三位数乘两位数)
3.你认为合肥到北京大约有多少千米呢?尝试估算。
你是如何估算的?和大家分享
4.合肥到北京到底有多少千米?怎样才能知道准确结果?(尝试笔算)(指生板书)
用竖式计算也就是笔算,就是我们今天要学习的新知识。
揭示课题:板书(笔算三位数乘两位数)
5.讲解计算方法
6.三位数乘两位数与两位数乘两位数有联系吗?
7.小结三位数乘两位数的'方法。
8.巩固练习:先课件,后动笔(总结计算中出现的问题)
9.当堂达标检测
三、总结:
今天有什么收获?
【教学内容】
人教版四年级上册教材第47页例1
【教学目标】
1.在已经掌握两位数乘两位数的笔算方法的基础上,理解三位数乘两位数的笔算算理,掌握三位数乘两位数的笔算方法。
2.结合具体的问题,选择合适的估算、验算方法进行估算、验算,养成良好的学习习惯。
3.经历利用旧知识解决新问题的过程,提升知识技能的迁移水平,发展逻辑思维能力。
【教学重点】
掌握三位数乘两位数的的笔算方法。
【教学难点】
用竖式计算时积的定位。
【教法选择】
引导法
【学法指导】
读—列—估—算—说
【教具准备】
课件、计算器
【教学过程】
一、复习导入
师:同学们,昨天我们年级开展了“经典美文诵读比赛”,检查了各班同学的诵读水平,现在老师也想开展“计算能力大比拼”竞赛活动,检查一下同学们的计算能力怎么样,你们敢接受挑战吗?
1.口算:
32×2=23×3=16×4=
180×3=240×2=410×2=
师:同学们的口算能力真不错,可是笔算能力怎么样呢?
2.笔算
14545
×2×12
提问:第一道题是几位数乘几位数?第二道呢?你们会算吗?
师:请同学们在练习本上计算。
问:谁能把你的笔算顺序讲给大家听?
师:看来同学们的笔算能力也很棒,把掌声送给自己吧!
3.导入新课。
(1)导入新课师:同学们,北京有很多著名的旅游景点,看看这些都是哪里?(课件出示北京的.旅游景点)李老师也利用假期去北京旅游了。
(课件出示)李老师从某城市乘火车去北京用了12小时,火车每小时行145千米。该城市到北京有多少千米?
a.读题,你从题中了解到哪些数学信息?要解决什么问题?
b.要解决该城市到北京有多少千米的问题,应该用什么方法计算?为什么?
c.怎样列算式?(板书:145×12)
问:这个算式是几位数乘几位数?
(2)揭题板书
师:今天,让我们一起来探究三位数乘两位数的笔算方法,好吗?
板书课题:三位数乘两位数的笔算
二、探究新知
学习例1:145×12
1.估算。
问:谁能估算一下145×12的积大约是多少?说说你是怎样想的?
145×12≈1500
说明:145×12的积接近1500.
提问:如果我们想知道145×12的积的准确值,应该怎么办?
2.笔算。
(1)小组合作学习,探究145×12的笔算方法。
(出示自学指导)
a.分小组讨论145×12的笔算顺序和方法。
b.尝试笔算,遇到有疑惑的问题想本组同学请教。
c.小组内交流笔算方法。
(2)集体交流汇报。
师:哪一小组能把你们的笔算顺序汇报给大家。
问:a.先算什么?(用两位数个位上的2和145相乘),乘得的积的未位数写在什么位下面?(个位)
b.再算什么?(两位数十位上的1和145相乘),乘得的积的未位要写在什么位下面?(十位下面),为什么?(十位上的1表示1个十,乘145得到的是145个十,所以积的末位要和十位对齐)
c.最后算怎样?(把两次乘得的积加起来)
3.用计算器验算。
问:想知道我们刚才笔算145×12的结果对不对,应该怎么办?师:请同学们用计算器检验你刚才的计算结果对不对。
4.解决问题。
145×12=1740(千米)
答:该城市到北京有1740千米。
三、精讲点拨
师生共同归纳总结:三位数乘两位数的笔算方法。
引导学生说清:先算什么?再算什么,积的书写位置怎样?最后算什么?
(三位数乘两位数的笔算:先用两位数个位上的数去乘三位数,积的末位要和个位对齐,再用两位数十位上的数去乘三位数,积的末位要和十位对齐,最后把两次乘得的积加起来。)
四、巩固练习
基础对点练,轻松来闯关。
师:学完新知识,我们一起来进行数学闯关,比比谁的收获最大。
1.填空。
123
×13
丁妮《三位数乘两位数的笔算》教学设计
369()位上的()与123的积
123()位上的()与123的积
丁妮《三位数乘两位数的笔算》教学设计
599()与()相乘的积
2.先列竖式计算,再用计算器验算。
134176425286
×12×47×36×35
3.误区警示:慧眼识真知,错误巧规避。
你能找出下列题中的错误,并改正过来吗?(略)
4.生活中的数学。
(1)一个长方形足球场,长是115米,宽是65米,这个长方形足球场的面积是多少平方米?
(2)一辆小货车载重量为3吨,现在用这辆小货车运25袋水泥,每袋水泥重125千克,能一次运走吗?
五、全课总结
今天你们学习了哪些知识,你有什么收获?
六、开心拓展
在下面的□里填入合适的数字(略)
七、布置作业
练习八第1(前四道)、第2题。
(一)学习目标
1、在解决实际问题的过程中,学会两位数乘一位数、整百数乘整十数的口算以及三位数乘两位数的估算和笔算,并能正确熟练的进行口算、估算和笔算;在具体情景中,探索积的变化规律。
2、在发现、提出并解决三位数乘两位数计算问题的过程中,逐步培养学生提出问题解决问题的能力,体验解决问题策略的多样性。
(二)学习内容
基础性学习包
1、整百数乘整十数的口算
2、三位数乘两位数的笔算
3、三位数乘两位数(末尾有0)
4、选择合适的估算方法解决问题
5、积的变化规律
开发性学习包
聪明小屋(设计两三位数乘法计算中,有些因数的某个数位上的数不知道,进行推理的算式)
拓展性学习包
算式因素变化引起的.积的变化
近期一段时间我们一直在进行笔算乘法的学习,今天着重研究因数和积的变化规律。
首先看下面的两组题目,如:
6×2=1220×4=80
6×20=12010×4=40
6×80=4805×4=20
仔细观察两组算式中因数的变化规律和积的变化规律。通过观察,两组算式最明显的特点是其中的一个因数没有发生任何变化。如第一组的第一个因数,始终是6,第二组的第二个因素始终是4。下面在分别来看。
第一组,一个因数没有变,另一个因数呈扩大的趋势。从第一个算式到第二个算式,2到20扩大了10倍(乘10),同时,积也跟着扩大10倍(乘10);第二个算式到第三个算式,20到80,扩大了4倍(乘4),积也跟着扩大了4倍(乘4),所以,我们可以得出一个结论,一个因数不变,另一个因数乘几,积也跟着乘几。
第二组,一个因数没有变,另一个因数呈缩小的趋势。从第一个算式到第二个算式,20到10缩小了2倍(除以2),同时,积也跟着缩小了2倍(除以2);第二个算式到第三个算式,10到5,缩小了2倍(除以2),积也跟着缩小了2倍(除以2),所以,我们可以得出一个结论,一个因数不变,另一个因数除以几,积也跟着除以几。
(三)整合点解读
1、学科单元内整合:
三位数乘两位数的计算,教师要用一个课件讲述计算时,对个位数和十位数分别相乘,然后相加;其他的特殊情况,如因数末尾有0的再进一步强调。
2、自主练习中的“志愿者擦玻璃”“信息窗1发放传单”等,教师要利用与品德课的整合,对学生进行教育,与语文课第四单元有关动物的内容进行整合,加强保护大自然的教育。
一、教学目标
(一)知识与技能
使学生理解掌握积的变化规律,尝试用简洁的语言表达积的变化规律,并能运用规律解决一些简单的问题。
(二)过程与方法
引导学生参与自主探究活动,经历观察发现、大胆猜想、举例验证、归纳总结积的变化规律的全过程,获得探索规律的基本方法和经验。初步渗透函数思想。
(三)情感态度和价值观
初步获得探索规律的一般方法和经验,发展学生的推理能力。
二、教学重难点
教学重点:发现、掌握并运用积的变化规律。
教学难点:初步掌握探究规律的一般方法。
三、教学准备
课件
四、教学过程
(一)揭示课题
口算比赛
(1)6×2=(1)20×4=
(2)6×20=(2)10×4=
(3)6×200=(3)5×4=
师:两组算式的积分别得多少?你们怎么算得这么快呀?今天我们就来学习找规律——积的变化规律
(二)探究新知
1.研究因数乘几的情况
看来,这三个算式中可能隐藏着某些联系、某些规律,为了便于发现,我们就一起按一定的顺序来观察。
(1)6×2=
(2)6×20=
(3)6×200=
(1)三个都是什么算式?
乘号两边的两个数叫什么?乘得的结果叫什么?
(2)整体看这三个乘法算式,什么变了?什么没变?
下面我们就具体研究一下因数怎么变的,积怎么变的?积的变化有没有规律,有什么规律?积的变化规律。(板书课题:积的变化规律)
(3)从上向下观察这三个乘法算式:
从(1)式到(2)式,一个因数怎样?另一个因数怎样?积呢?看来(1)式和(2)式间有这种关系,还有哪两个算式之间存在这种关系?
从(1)式到(3)式,因数和积发生了怎样的变化?从(2)式到(3)式呢?两人互相说一说。
(4)刚才我们观察了(1)式和(2)式、(1)式和(3)式、(2)式和(3)式,你们发现什么共同的规律了吗?(在乘法算式中,一个因数不变,另一个因数乘几,积也乘几)
(5)我们通过观察这三个算式,发现了算式间的联系与变化,这个过程叫“观察发现”(板书:观察发现)。随后,我们根据发现进行了大胆猜想(板书:大胆猜想)――在乘法算式中,一个因数不变,另一个因数乘几,积也乘几。要想知道这个猜想是不是在任何情况下都成立,是否正确?我们可以怎么办?(板书:举例验证)
(6)两人一组举例验证,我们刚才的猜想是否成立。
(7)汇报。
(8)回忆一下,我们归纳这条规律经过了哪几个环节?
(观察发现、大胆猜想、举例验证,归纳结论。)
【设计意图】这一环节的设计,让学生不仅仅再次明确了本课知识点,更加明确了积的变化规律的探究策略,这样真正做到了授之以“渔”,为后面的探究做好方法铺垫。
2.研究因数除以几的情况
(1)由此你能猜到,在乘法算式中,还可能有什么规律?
(2)两人一组,用我们刚才的方法来研究:“在乘法算式中,一个因数不变,另一个因数除以几,积也除以几”这个猜想。
可以以口算题为例,也可以自己举例。
①20×4=
②10×4=
③5×4=
(3)汇报。
(4)通过验证研究,我们又发现了一个什么规律?
(在乘法算式中,一个因数不变,另一个因数除以几,积就除以几。)
(5)刚才举例验证时,另一个因数除以几都行吗?除以0行不行?为什么?
这条规律还要补充什么?(板书:0除外)
3.归纳小结:
最开始,我们发现在乘法算式中,一个因数不变,另一个因数变化,积也变化。通过整节课的学习,能完整地说说因数和积是怎么变化的吗?
师:“谁能用一句话将发现的两条规律概括为一条?”(在乘法算式中,一个因数不变,另一个因数乘几或除以几(0除外),积就乘几或除以几。)
4.应用规律。
完成例3下面的“做一做”第1题
【设计意图】根据前面探究积的.变化规律的方法,每一位学生都亲自去经历探究规律的方法,从而培养学生的探究能力,概括总结能力。
(三)规律拓展
研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
1.独立思考,发现规律。
请学生完成下列计算,并在组内述说自己发现的规律。
18×24=105×45=
(18÷2)×(24×2)=(105×3)×(45÷3)=
(18×2)×(24÷2)=(105÷5)×(45×5)=
2.交流讨论,概括规律
组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,它们的乘积不变。
【设计意图】不同层次练习的设计,让学生真正把学到的知识应用于解决实际问题中,并激发学生进一步探究的热情,把学习引向课外。
(四)巩固练习
1.在○中填上运算符号,在□中填上数。
24×75=180036×104=3744
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
2.应用规律解决问题。
完成例3下面的“做一做”第2题
【设计意图】通过基本练习,让学生不断加深对规律的认识与理解,提升学生的观察能力、概括和归纳能力以及语言表达能力。通过解决实际问题,让学生切实感受数学与生活的联系。