生态化学计量学研究最早主要是针对水生生态系统开展的,海洋生态学家和地球化学家应用了化学计量学原理指导养分限制和养分循环的研究已有50多年的历史了[1]。生态化学计量学主要探究生物系统能量和多种元素的平衡,是当今研究的热点问题[2-3],关于碳(C)、氮(N)、磷(P)生态化学计量学的研究最多,主要是因为碳是结构性物质[4],而氮和磷是生物生长的限制性养分[5],三者密切相关。生态化学计量学能更好地揭示生态系统各组分——包括植物、凋落物和土壤等养分比例的调控机制,能够帮助我们更充分的认识养分比例在生态系统过程中的功能作用,而且可以更明确的阐明生态系统碳、氮、磷平衡的元素化学计量比格局,对于揭示生源要素各元素间的相互作用与制约变化规律,实现自然资源的可持续发展和利用具有十分重要的现实意义[6]。
1材料与方法
1.1样品的采集本次研究地点为辽河口湿地,它由大辽河、外辽河、大凌河等河流入海冲积而形成的一个河口三角洲,是我国四大河口三角洲之一(黄河、长江、珠江、辽河),总面积达30×104hm2,是亚洲最大的暖温带滨海湿地,也是我国北方滨海湿地和滩涂分布最集中的区域。根据植被的生长情况及受人类干扰的程度,将湿地划分为非退化区和退化区。其中非退化区包括翅碱蓬区(6个)和芦苇区(13个)两种区域类型,共计19个站位。退化区包括翅碱蓬退化区和芦苇退化区两大类退化区,根据分布特点将翅碱蓬退化区分为滩涂赤碱蓬退化区和翅碱蓬芦苇退化区,由于芦苇区存在油井,为考虑油井对湿地的影响,将芦苇退化区分为苇田退化区和油井区苇田,每一类小退化区布设3个站点,共计12个站位。采样时间为2009年5月,样品采集后经自然风干、磨碎,混匀后过80目筛,装入聚乙烯袋内冷冻(4℃)保存直至分析。
1.2样品分析有机碳和油类的测定方法参照国标GB17378.5-2007[7]进行。用凯氏法测定土壤中总氮含量。用消解-钼抗锑抗分光光度法测定样品中的总磷含量。实验过程中选择20%的样品进行平行双样测定,相对标准偏差均小于4%。土壤的盐度和pH值采用电位法测定,分别使用DDS-307型电导仪和PHS-3C精密酸度计完成分析。
1.3数据处理与方法运用软件Excel2003、suffer8.0、SPSS13.0和Origin7.5进行数据分析和绘图处理。
2结果与讨论
2.1非退化区湿地土壤生源要素计量学特征
2.1.1湿地壤碳、氮、磷生态化学计量学特征赤碱篷湿地土壤的碳、氮、磷元素的变化范围分别为0.19%~0.36%,0.07%~0.10%,0.41‰~0.53‰,平均值为0.28%、0.09%、0.47‰,变异系数为22.2%,14.0%和10.9%,氮和磷元素的空间变异性低于碳。此外,相关分析表明,碳与氮元素间存在着明显的相关关系(P<0.01),而碳和磷、氮和磷元素间不存在明显相关性(P>0.05)。其中,碳和氮元素之间呈现良好的线性拟合关系,其R2值为0.9611,二者几乎同步变化,碳和磷(R2值为0.4374)、氮和磷(R2值为0.4244)之间的线性拟合程度相对较低。赤碱篷湿地土壤C/N比为2.65~3.60,平均值为3.20,变异系数为10.1%;C/P比为4.53~7.18,平均值为5.92,变异系数为18.2%;N/P比为1.57~2.14,平均值为1.84,变异系数为10.9%,土壤C/N、N/P比变化相对较小,而C/P比变化较大。芦苇湿地土壤的碳、氮、磷元素的变化范围分别为1.11%~3.18%,0.12%~0.29%,0.42‰~0.66‰,平均值为1.70%、0.16%、0.56‰,变异系数为30.7%、25.6%和12.6%,在空间变异性性上碳>氮>磷。相关分析表明,碳与氮元素间均存在着明显的相关关系(n=13,P<0.01),碳与磷、氮与磷元素间不存在相关关系(n=13,P>0.05)。此外,碳和氮元素元素之间呈现良好的线性拟合关系,其R2值为0.9605,二者几乎同步变化,碳和磷(R2值为0.0108)、氮和磷(R2值为0.0229)之间的线性拟合程度较低。芦苇湿地土壤C/N比为5.37~6.93,平均值为6.00,变异系数为7.5%;C/P比为10.55~29.28,平均值为17.95,变异系数为29.9%;N/P比为1.97~4.60,平均值为2.96,变异系数为24.7%,土壤C/N比变化相对较小,而C/P、N/P比变化较大。
2.1.2两种湿地对比分析从数值上看,芦苇湿地在TOC、TN、TP方面均比赤碱篷湿地高。芦苇湿地TOC含量为1.63%,赤碱篷湿地TOC含量为0.31%,芦苇湿地在TN含量上是赤碱篷湿地5倍;芦苇湿地TN含量为0.16%,赤碱篷湿地TN含量为0.08%,芦苇湿地在TN含量上是赤碱篷湿地2倍;芦苇湿地TP含量为0.068%,赤碱篷湿地TP含量为0.056%,芦苇湿地在TP含量上是赤碱篷湿地1.21倍。由于赤碱篷湿地与芦苇湿地植被的不同是导致TOC方面存在高达5倍差异的主要原因。相对于翅碱蓬,芦苇凭借其发达的根系和植物枯落物为表层土壤积累了较高含量的有机碳[8-9]。在TN方面,两种湿地同样存在较大差异,分析原因认为除植被因素外,由于赤碱篷湿地生长在海边滩涂区,受涨落潮影响,在较短的干湿交替周期作用下,有助于湿地脱氮[10],其全氮含量较低。农田灌溉水、工业及生活废水的排放等人为扰动因素,在一定程度上缩小了两种湿地在TN上的差异。相比TOC、TN,两种湿地TP含量差别较小,可以认为TP的含量与植被类型不大。原因是湿地自然土壤中的磷主要来源于成土母质以及动植物残体,其含量主要受到区域气候条件和土壤类型的影响[11]。罗先香[12]等通过对辽河口湿地研究认为,总磷含量的变异系数比较小,总磷在整个区域分布较均匀,这表明土壤中磷含量与该地区的成土母质密切相关。
2.1.3影响土壤碳氮磷比变化的因子分析土壤元素的生态化学计量学特征受到气候母质地形和生物等成土因素的影响,本次调查的芦苇生长区的土壤类型是盐化草甸土、滨海沼泽盐土,赤碱篷生长区的土壤类型是滨海潮滩土。这里主要从土壤理化性质的角度进行分析。土壤C/N、C/P、N/P比除受到各自比例元素的影响外,还受到土壤pH、盐度、油类(调查区周边存在油井)等因子的调控。利用SPSS13.0软件分别进行相关性计算,不同类型下的土壤元素生态化学计量学特征其影响因子也不一致。由表2-1的计算结果可知,pH与两种湿地的C/N、C/P比存在显着的相关性,与N/P比存在显着的相关性;盐度与芦苇湿地的C/N、C/P比存在显着的相关性,与N/P比存在显着的相关性;由于赤碱篷本身是一种耐盐植物,对盐度的变化反应不明显,相关性分析证实了这一点,盐度与赤碱篷湿地的C/N、C/P、N/P比无关;石油类与两种湿地没有明显的相关性。
2.2退化区土壤生源要素计量学特征
2.2.1赤碱篷湿地退化区土壤碳、氮、磷生态化学计量学特征土壤的碳、氮、磷元素的变化范围分别为0.19%~0.25%,0.07%~0.10%,0.41‰~0.44‰,平均值为0.22%、0.08%、0.42‰,变异系数为10.7%,14.5%和2.8%,磷元素的空间变异性低于碳和氮。在赤碱篷退化区,碳、氮、磷之间的不存在显着的相关关系(n=6,P>0.05),线性拟合程度很低。翅碱蓬湿地土壤C/N比为2.19~3.07,平均值为2.63,变异系数为11.1%;C/P比为4.32~6.08,平均值为5.16,变异系数为11.8%;N/P比为1.63~2.43,平均值为1.98,变异系数为15.4%,土壤N/P比变化相对较小,而C/N、C/P比变化较大。如图3-1,在TOC、TN、TP含量方面,非退化区比退化区要高,这表明芦苇湿地植被对C、N、P有一定程度贡献。相关性方面,退化区与非退化区的表现差异性较大。在非退化区,碳与氮元素间存在着明显的相关关系,而碳与磷,氮与磷元素间存在明显相关性,而在退化区,碳、氮、磷元素之间的不存在显着的相关关系,线性拟合程度很低。分析原因可能是由于在翅碱蓬退化区植被较少,对碳、氮、磷元素的含量的控制力较弱,其更多的受到人类活动的影响,人类活动的不确定性致使碳、氮、磷元素之间相关性较小。
2.2.2芦苇湿地退化区土壤碳、氮、磷生态化学计量学特征土壤的碳、氮、磷元素的变化范围分别为:0.51%~1.36%,0.11%~0.20%,0.44‰~0.66‰,平均值为0.89%、0.15%、0.54‰,变异系数为33.4%,21.8%和18.5%,氮和磷元素的空间变异性低于碳。此外,通过对三种元素的关联性研究表明,碳与氮元素间存在着极显着的相关关系(n=6,P<0.01),碳与磷元素间存在着极显着的相关关系(n=6,P<0.01),而氮与磷元素间存在明显相关性(n=6,P<0.05)。碳和氮元素(R2值为0.9548)之间、氮和磷(R2值为0.9046)之间呈现良好的线性拟合关系,二者几乎同步变化,碳和磷(R2值为0.8237)线性拟合程度相对较低。芦苇湿地土壤C/N比为4.64~6.82,平均值为5.75,变异系数为13.4%;C/P比为11.60~20.65,平均值为16.33,变异系数为19.0%;N/P比为2.50~3.03,平均值为2.82,变异系数为7.5%,土壤N/P比变化相对较小,而C/N、C/P比变化较大。如图3-2,同翅碱蓬湿地类似,在TOC、TN、TP含量方面均表现出非退化区>退化区,这表明芦苇湿地植被对C、N、P有一定程度贡献,特别的是在TOC方面,由于凋落物分解的原因,使土壤中有机碳含量提高较为明显。由于取样点LH27、LH28、LH29离油井距离较近,但其在TOC方面并未表现出明显高于周边站位的现象,说明目前石油开发没有发生泄漏现象,尚未对周边环境造成明显影响。相关性方面,芦苇湿地退化区与非退化区类似,其TOC与TN表现出同步的变化趋势,具有极显着的相关性(P<0.01),而在翅碱蓬湿地,TOC与TN没有表现出相同的变化趋势,可认为不存在相关性(P>0.05)。通过对比两种湿地退化区可以发现,同样受到人类活动的干扰而出现植被的退化,芦苇表现出对碳、氮、磷元素更强的维持平衡的能力。在芦苇湿地退化区,碳、氮、磷元素依然有着显着的相关性及较高的其线性拟合,这说明芦苇较强的维持碳、氮、磷元素平衡的能力,而在翅碱蓬湿地,碳、氮、磷元素不存在相关性,线性拟合较低,表现出较差的抗干扰能力,在翅碱蓬退化的情况下保持碳、氮、磷元素之间的平衡能力不足,人类活动对碳、氮、磷的含量的影响较大。
1、盐碱地种稻概述
1.1盐碱地种稻
盐碱地种稻是指在土壤中含有较多的可溶性盐分、不利于作物生长的土地上进行水稻种植。
1.2盐碱地分类
盐碱地可以分为轻度盐碱地、中度盐碱地和重度盐碱地。轻度盐碱地含盐量在千分之三以下,出苗率80%左右;重度盐碱地含盐量超过千分之六,出苗率低于50%;介于二者中间为中度盐碱地。用PH值表示为:轻度盐碱地PH值为7.1-8.5,中度盐碱地PH值为8.5-9.5,重度盐碱地PH值为9.5以上。
1.3盐碱地改良注意事项
注意有些地方浇水时大水漫灌,或低洼地区只灌不排,以致地下水位很快上升而积盐,使原来的好地变成了盐碱地,造成次生盐渍化。为防止次生盐渍化,水利设施要排灌配套,严禁大水漫灌,灌水后要及时耕锄。
盐碱土形成的根本原因在于水分状况不良,所以在改良初期,重点应放在改善土壤的水分状况上面。一般分几步进行,首先排盐、洗盐、降低土壤盐分含量;再种植耐盐碱的植物,培肥土壤;最后种植作物。
2、盐碱地改良方法
近半个世纪以来,我国盐碱地改良和利用技术已取得长足发展,形成了以物理改良、水利改良、生物改良和化学改良为核心的四大治理体系。在此主要就灌溉洗盐、整地改良、合理培肥等方面进行论述。
2.1灌溉洗盐
通过灌水措施使土壤盐分溶解、下渗,把表土层中的可溶性盐碱排到深层土中或淋洗出去,侧渗入排水沟加以排除。
同时要加台土地平整,使水分均匀下渗,提高降雨淋盐和灌溉洗盐的效果,防止土壤斑状盐渍化。
2.2整地改良
要深耕深翻、适时耙地。盐分在土壤中的分布情况为地表层多,下层少,经过耕翻,可把表层土壤中盐分翻扣到耕层下边,把下层含盐较少的土壤翻到表面。翻耕能疏松耕作层,切断土壤毛细管,减弱土壤水分蒸发,有效地控制土壤返盐。盐碱地翻耕的时间最好是春季和秋季。春、秋是返盐较重的季节。秋季耕翻尤其有利于杀死病虫卵,清除杂草,深埋根茬,加强有机质分解和迟效养分的释放,所以值得提倡。
适时耙地可疏松表土,截断土壤毛细管水向地表输送盐分,起到防止返盐的作用。耙地要适时,要浅春耕,抢伏耕,早秋耕,耕干不耕湿。
2.3合理培肥
增施有机肥,合理施用化肥,有机无机相结合。盐碱地一般有低温、土瘦、结构差的特点。有机肥经微生物分解、转化形成腐殖质,能提高土壤的缓冲能力,并可和碳酸钠作用形成腐殖酸钠,降低土壤碱性。腐殖酸钠还能刺激作物生长,增强抗盐能力。腐殖质可以促进团粒结构形成,从而使孔度增加,透水性增强,有利于盐分淋洗,抑制返盐。有机质在分解过程中产生大量有机酸,一方面可以中和土壤碱性,另一方面可加速养分分解,促进迟效养分转化,提高磷的有效性。因此,增施有机肥料是改良盐碱地,提高土壤肥力的重要措施。此外对盐碱地采取绿化措施,种植耐盐碱的植物,能够起到很好的培肥土壤作用。
化肥对改良盐碱的作用也很重要,化肥给土壤中增加氮磷钾,促进作物生长,提高作物耐盐力的同时,也增加了作物产量,多出秸秆,扩大有机肥源,以无机促有机。施用化肥可以改变土壤盐分组成,抑制盐类对植物的不良影响。施用化肥时要避免施用碱性肥料,如氨水、碳酸氢铵、石灰氮、钙镁磷肥等,而应以中性和酸陛肥料为好。硫酸钾复合肥是微酸性肥料,适合在盐碱地上施用,且有改良盐碱地的良好作用。
3、盐碱地改良种稻的实践
黑龙江省农业技术推广站在杜蒙、林甸等地实施了盐碱地改良种稻项目,初步探索出了重度盐碱地改良种稻的处理方法。
3.1解决盐碱地育苗问题。选择耐盐碱的水稻品种,实行客土育苗,大棚大钵体培育带蘖壮秧,提高水稻的耐盐碱能力,育苗用水为深井水。
3.2解决盐碱高问题。一是水利措施。灌排相间,单排单灌,并增设强排泵站,便于洗盐碱,防止暴雨内涝,及时排除明水;二是改良土壤。大量应用牛粪等生物有机复合肥、盐碱地改良剂、沸石粉、稻壳粉等进行土壤改良,提高土壤肥力,改善土壤结构,提高土壤的通透性。采取秋翻地,通过冬季冻融交替,提高洗盐排碱效果;三是酸化措施。水稻生长关键阶段用稀硫酸调整PH值,排水后施酸调整,减轻危害。
3.3解决本田盐碱危害及肥料固定问题。主要采取有机、生理酸性肥料,生物有机复合肥、盐碱地专用肥,大颗粒缓释肥料,增施磷肥和锌肥。施肥方法主要采取少施肥、勤施肥、叶面肥等相互配合。
1培育壮苗科学整地
1.1适时早播、稀播育壮苗
重度盐碱地的水稻栽培一定要适时早播,稀播种子以利培育壮秧。在吉林省西部盐碱稻区,播种时间应掌握在4月上旬。
1.2本田轻打浆、避免秧苗下陷
插秧前适度打浆是插秧成败的关键,切忌打浆过重、过深,避免插秧时秧苗下陷而影响分蘖。
1.3科学施用生物土壤修复剂
盐碱土壤,特别重度盐碱土壤,pH值大于10、盐含量2.5以上,几乎寸草不生,土壤粘滞不通气,水稻根系不能正常发育,盐碱危害严重,水稻无法高产甚至绝收。一种新型土壤修复剂,土壤pH值8~9时,每公顷只需使用一吨,pH值大于10时,每公顷也仅需2~3吨即可一次完成盐碱土壤的修复,使这种重度盐碱地当年变为良田。投入产出比大于1∶3,生物土壤修复剂只需要在水稻田打浆时撒施均匀就可以。
1.4科学施用化肥
盐碱土壤的水稻栽培要遵循以酸性肥料施入为主体,不要施肥过量,掌握每公顷纯氮在约100~150公斤,磷钾相应配合,少施勤施为原则。
2适时移栽、强化管理
水稻栽培一直提倡早育苗早插秧,然而由于盐碱地地温低,秧苗早插容易发生死苗,在我省西部盐碱地最佳插秧时间为5月下旬~6月上旬。盐碱地水稻移栽后千万不能缺水,栽后秧苗缺水将会导致严重缓苗甚至死苗。所以盐碱地水稻插秧后一定要满足水分供应,但一定要深水返青护秧苗。叶面补充微量元素肥料。由于盐碱地水稻对微量元素的特殊需求,水稻移栽后,及时于返青、分蘖、孕穗、灌浆几个重要环节叶面补充微量元素肥料。注意叶面肥料使用时间最好是上午10点前和下午4点后,避开中午高温,最好不用新打上来的井水对药。及时防治地下害虫。由于盐碱地水稻害虫的多样性和特殊性,一定要勤观察,发现害虫及时用药。
3科学灌溉、避免返碱,减轻危害
关键词:盐漠带;植被筛选;土壤盐碱;生态恢复
国内外研究证明,通过对耐盐碱植被的筛选,在盐碱地上种植耐盐植物与当前农业种植结构调整相适应,既可有效地抑制土壤盐分,改良盐碱地,保持水土,恢复生态,改善生态环境,又能促使畜牧业发展,取得了显著的经济效益,因此盐碱地种植耐盐植物是当前盐碱地高效利用的有效途径,值得大力推广。本研究通过适生植被的人工灌溉(植苗或直播)恢复重建技术,对准噶尔盆地南缘盐漠带试验区域内植物群落的物种结构和分布特点进行调查分析,为绿洲生态重建及进一步开发利用提供选择和对策。
1材料与方法
1.1试验区土壤盐分含量测定
根据在准噶尔盆地南缘典型盐漠带进行的土壤盐分采样的室内分析,研究出土壤盐分含量与1:5土水比土壤溶液浸提液电导率的校正关系。通过对土样的采集,使用电导率仪进行测定,建立出土壤盐分含量与1:5土水比土壤溶液浸提液电导率的校正模型。使用电磁感应式大地电导率仪EM38对144团试验基地的代表性盐漠地带土壤盐分进行电磁感应式调查。最后建立电磁感应式大地电导率与土壤盐分含量的校正模型,然后根据该模型和区域调查数据解译获得0-20cm,20-60cm,60-100cm的土壤盐分空间分布特征与规律。
2结果与分析
2.1试验区土壤盐分含量空间分布特征
在144团、147团分别建立了自然植被恢复实验与示范。其中对144团试验基地的代表性盐漠地带土壤盐分进行了电磁感应式调查,首先建立电磁感应式大地电导率与土壤盐分含量的校正模型,然后根据该模型和区域调查数据解译获得了0-20cm,20-60cm,60-100cm的土壤盐分空间分布特征与规律。
在20-60cm土层,没有出现土壤含盐量>10.0g/kg的盐土类型区;3.0-6.0g/kg的中度盐化土壤为主要类型,占总面积的70.78%;6.0-10.0g/kg的重度盐化土壤面积占总面积的5.47%;
60-100cm深度土层,没有出现土壤含盐量>10.0g/kg的盐土类型区;3.0-6.0g/kg的中度盐化土壤为主要类型,占总面积的62.86%;6.0-10.0g/kg的重度盐化土壤面积占总面积的1.09%;
准噶尔盆地南缘代表性盐漠带土壤盐分总体分布规律如下:各深度土层中盐分含量为3.0-6.0g/kg的中度盐化土壤为主要土壤类型,都占总面积的59.72%以上。
2.2试验区的建设
144团:采取铁丝围栏封育(150亩)、适当的滴灌补水、播种、移栽苗等多种技术手段,目前示范基地中的植被长势很好,植被覆盖度提高到50~70%,增加了植被种类。经过3年的建设,促进了幼苗的萌发和定居,提高了植被生物量(50%以上)和地表覆盖度(20%以上,局部地段可达40%以上)。增加了生物多样性,试验地内还有长刺猪毛菜、白茎盐生草、盐爪爪、梭梭、和柽柳等植物。通过适量补水后,提高生物量51.32%,红砂幼苗平均每平方米增加2棵。
147团:147团试验地土壤盐碱非常严重,0~40cm深混合土样测定PH值为10.8、含盐量5.6g/kg-10g/kg以上。为了提高移栽树苗的成活率,在示范点按行距5m、沟宽0.9m、深度为0.6m标准,东西方向开挖了38条沟,然后挖宽0.6m、深度为0.8m坑,移栽了柽柳苗,统计结果柽柳苗的成活率达到了85%。通过沟灌补水,激发土壤种子库,恢复盐爪爪,与人工柽柳形成群落,草本植物有灰藜、盐生草、碱蓬、猪毛菜等。
3结论
(1)通过对准噶尔盆地南缘盐漠带试验基地的盐碱地进行调查之后发现,红砂、白刺、柽柳、尖叶盐爪爪、无叶假木贼能够较好地适生当地的环境,是盐碱地植被人工改良的首选耐盐碱植被。
(2)在144团、147团试验区内土壤盐分总体分布规律如下:各深度土层中盐分含量为3.0-6.0g/kg的中度盐化土壤为主要土壤类型,都占总面积的59.72%以上。结合土壤含盐量的测定分析,在该区域土地盐渍化治理和生态恢复中采取针对性的措施。
(3)通过不同人工灌溉(植苗或直播)恢复重建技术,在准噶尔盆地南缘盐漠带试验区内144团植被的覆盖度提高了3倍多,物种丰富度也由原来的1.36提高到了1.74,多样性指数由恢复前的0.48提高到恢复后的0.71。147团恢复后植被的覆盖度由原来的7~15%提高到了60~85%,恢复后植被发育良好,植被以盐生植物为主,物种丰富度提高了2倍。多样性指数由原来的0.51提高到了恢复后的0.66。
参考文献:
引言
生态化学计量学研究最早主要是针对水生生态系统开展的,海洋生态学家和地球化学家应用了化学计量学原理指导养分限制和养分循环的研究已有50多年的历史了[1]。生态化学计量学主要探究生物系统能量和多种元素的平衡,是当今研究的热点问题[2-3],关于碳(C)、氮(N)、磷(P)生态化学计量学的研究最多,主要是因为碳是结构性物质[4],而氮和磷是生物生长的限制性养分[5],三者密切相关。生态化学计量学能更好地揭示生态系统各组分——包括植物、凋落物和土壤等养分比例的调控机制,能够帮助我们更充分的认识养分比例在生态系统过程中的功能作用,而且可以更明确的阐明生态系统碳、氮、磷平衡的元素化学计量比格局,对于揭示生源要素各元素间的相互作用与制约变化规律,实现自然资源的可持续发展和利用具有十分重要的现实意义[6]。
1材料与方法
1.1样品的采集本次研究地点为辽河口湿地,它由大辽河、外辽河、大凌河等河流入海冲积而形成的一个河口三角洲,是我国四大河口三角洲之一(黄河、长江、珠江、辽河),总面积达30×104hm2,是亚洲最大的暖温带滨海湿地,也是我国北方滨海湿地和滩涂分布最集中的区域。根据植被的生长情况及受人类干扰的程度,将湿地划分为非退化区和退化区。其中非退化区包括翅碱蓬区(6个)和芦苇区(13个)两种区域类型,共计19个站位。退化区包括翅碱蓬退化区和芦苇退化区两大类退化区,根据分布特点将翅碱蓬退化区分为滩涂赤碱蓬退化区和翅碱蓬芦苇退化区,由于芦苇区存在油井,为考虑油井对湿地的影响,将芦苇退化区分为苇田退化区和油井区苇田,每一类小退化区布设3个站点,共计12个站位。采样时间为2009年5月,样品采集后经自然风干、磨碎,混匀后过80目筛,装入聚乙烯袋内冷冻(4℃)保存直至分析。
1.2样品分析有机碳和油类的测定方法参照国标GB17378.5-2007[7]进行。用凯氏法测定土壤中总氮含量。用消解-钼抗锑抗分光光度法测定样品中的总磷含量。实验过程中选择20%的样品进行平行双样测定,相对标准偏差均小于4%。土壤的盐度和pH值采用电位法测定,分别使用DDS-307型电导仪和PHS-3C精密酸度计完成分析。
1.3数据处理与方法运用软件Excel2003、suffer8.0、SPSS13.0和Origin7.5进行数据分析和绘图处理。
2结果与讨论
2.1非退化区湿地土壤生源要素计量学特征
2.1.1湿地壤碳、氮、磷生态化学计量学特征赤碱篷湿地土壤的碳、氮、磷元素的变化范围分别为0.19%~0.36%,0.07%~0.10%,0.41‰~0.53‰,平均值为0.28%、0.09%、0.47‰,变异系数为22.2%,14.0%和10.9%,氮和磷元素的空间变异性低于碳。此外,相关分析表明,碳与氮元素间存在着明显的相关关系(P<0.01),而碳和磷、氮和磷元素间不存在明显相关性(P>0.05)。其中,碳和氮元素之间呈现良好的线性拟合关系,其R2值为0.9611,二者几乎同步变化,碳和磷(R2值为0.4374)、氮和磷(R2值为0.4244)之间的线性拟合程度相对较低。赤碱篷湿地土壤C/N比为2.65~3.60,平均值为3.20,变异系数为10.1%;C/P比为4.53~7.18,平均值为5.92,变异系数为18.2%;N/P比为1.57~2.14,平均值为1.84,变异系数为10.9%,土壤C/N、N/P比变化相对较小,而C/P比变化较大。芦苇湿地土壤的碳、氮、磷元素的变化范围分别为1.11%~3.18%,0.12%~0.29%,0.42‰~0.66‰,平均值为1.70%、0.16%、0.56‰,变异系数为30.7%、25.6%和12.6%,在空间变异性性上碳>氮>磷。相关分析表明,碳与氮元素间均存在着明显的相关关系(n=13,P<0.01),碳与磷、氮与磷元素间不存在相关关系(n=13,P>0.05)。此外,碳和氮元素元素之间呈现良好的线性拟合关系,其R2值为0.9605,二者几乎同步变化,碳和磷(R2值为0.0108)、氮和磷(R2值为0.0229)之间的线性拟合程度较低。芦苇湿地土壤C/N比为5.37~6.93,平均值为6.00,变异系数为7.5%;C/P比为10.55~29.28,平均值为17.95,变异系数为29.9%;N/P比为1.97~4.60,平均值为2.96,变异系数为24.7%,土壤C/N比变化相对较小,而C/P、N/P比变化较大。
2.1.2两种湿地对比分析从数值上看,芦苇湿地在TOC、TN、TP方面均比赤碱篷湿地高。芦苇湿地TOC含量为1.63%,赤碱篷湿地TOC含量为0.31%,芦苇湿地在TN含量上是赤碱篷湿地5倍;芦苇湿地TN含量为0.16%,赤碱篷湿地TN含量为0.08%,芦苇湿地在TN含量上是赤碱篷湿地2倍;芦苇湿地TP含量为0.068%,赤碱篷湿地TP含量为0.056%,芦苇湿地在TP含量上是赤碱篷湿地1.21倍。由于赤碱篷湿地与芦苇湿地植被的不同是导致TOC方面存在高达5倍差异的主要原因。相对于翅碱蓬,芦苇凭借其发达的根系和植物枯落物为表层土壤积累了较高含量的有机碳[8-9]。在TN方面,两种湿地同样存在较大差异,分析原因认为除植被因素外,由于赤碱篷湿地生长在海边滩涂区,受涨落潮影响,在较短的干湿交替周期作用下,有助于湿地脱氮[10],其全氮含量较低。农田灌溉水、工业及生活废水的排放等人为扰动因素,在一定程度上缩小了两种湿地在TN上的差异。相比TOC、TN,两种湿地TP含量差别较小,可以认为TP的含量与植被类型不大。原因是湿地自然土壤中的磷主要来源于成土母质以及动植物残体,其含量主要受到区域气候条件和土壤类型的影响[11]。罗先香[12]等通过对辽河口湿地研究认为,总磷含量的变异系数比较小,总磷在整个区域分布较均匀,这表明土壤中磷含量与该地区的成土母质密切相关。
2.1.3影响土壤碳氮磷比变化的因子分析土壤元素的生态化学计量学特征受到气候母质地形和生物等成土因素的影响,本次调查的芦苇生长区的土壤类型是盐化草甸土、滨海沼泽盐土,赤碱篷生长区的土壤类型是滨海潮滩土。这里主要从土壤理化性质的角度进行分析。土壤C/N、C/P、N/P比除受到各自比例元素的影响外,还受到土壤pH、盐度、油类(调查区周边存在油井)等因子的调控。利用SPSS13.0软件分别进行相关性计算,不同类型下的土壤元素生态化学计量学特征其影响因子也不一致。由表2-1的计算结果可知,pH与两种湿地的C/N、C/P比存在显著的相关性,与N/P比存在显著的相关性;盐度与芦苇湿地的C/N、C/P比存在显著的相关性,与N/P比存在显著的相关性;由于赤碱篷本身是一种耐盐植物,对盐度的变化反应不明显,相关性分析证实了这一点,盐度与赤碱篷湿地的C/N、C/P、N/P比无关;石油类与两种湿地没有明显的相关性。
2.2退化区土壤生源要素计量学特征
2.2.1赤碱篷湿地退化区土壤碳、氮、磷生态化学计量学特征土壤的碳、氮、磷元素的变化范围分别为0.19%~0.25%,0.07%~0.10%,0.41‰~0.44‰,平均值为0.22%、0.08%、0.42‰,变异系数为10.7%,14.5%和2.8%,磷元素的空间变异性低于碳和氮。在赤碱篷退化区,碳、氮、磷之间的不存在显著的相关关系(n=6,P>0.05),线性拟合程度很低。翅碱蓬湿地土壤C/N比为2.19~3.07,平均值为2.63,变异系数为11.1%;C/P比为4.32~6.08,平均值为5.16,变异系数为11.8%;N/P比为1.63~2.43,平均值为1.98,变异系数为15.4%,土壤N/P比变化相对较小,而C/N、C/P比变化较大。如图3-1,在TOC、TN、TP含量方面,非退化区比退化区要高,这表明芦苇湿地植被对C、N、P有一定程度贡献。相关性方面,退化区与非退化区的表现差异性较大。在非退化区,碳与氮元素间存在着明显的相关关系,而碳与磷,氮与磷元素间存在明显相关性,而在退化区,碳、氮、磷元素之间的不存在显著的相关关系,线性拟合程度很低。分析原因可能是由于在翅碱蓬退化区植被较少,对碳、氮、磷元素的含量的控制力较弱,其更多的受到人类活动的影响,人类活动的不确定性致使碳、氮、磷元素之间相关性较小。
2.2.2芦苇湿地退化区土壤碳、氮、磷生态化学计量学特征土壤的碳、氮、磷元素的变化范围分别为:0.51%~1.36%,0.11%~0.20%,0.44‰~0.66‰,平均值为0.89%、0.15%、0.54‰,变异系数为33.4%,21.8%和18.5%,氮和磷元素的空间变异性低于碳。此外,通过对三种元素的关联性研究表明,碳与氮元素间存在着极显著的相关关系(n=6,P<0.01),碳与磷元素间存在着极显著的相关关系(n=6,P<0.01),而氮与磷元素间存在明显相关性(n=6,P<0.05)。碳和氮元素(R2值为0.9548)之间、氮和磷(R2值为0.9046)之间呈现良好的线性拟合关系,二者几乎同步变化,碳和磷(R2值为0.8237)线性拟合程度相对较低。芦苇湿地土壤C/N比为4.64~6.82,平均值为5.75,变异系数为13.4%;C/P比为11.60~20.65,平均值为16.33,变异系数为19.0%;N/P比为2.50~3.03,平均值为2.82,变异系数为7.5%,土壤N/P比变化相对较小,而C/N、C/P比变化较大。如图3-2,同翅碱蓬湿地类似,在TOC、TN、TP含量方面均表现出非退化区>退化区,这表明芦苇湿地植被对C、N、P有一定程度贡献,特别的是在TOC方面,由于凋落物分解的原因,使土壤中有机碳含量提高较为明显。由于取样点LH27、LH28、LH29离油井距离较近,但其在TOC方面并未表现出明显高于周边站位的现象,说明目前石油开发没有发生泄漏现象,尚未对周边环境造成明显影响。相关性方面,芦苇湿地退化区与非退化区类似,其TOC与TN表现出同步的变化趋势,具有极显著的相关性(P<0.01),而在翅碱蓬湿地,TOC与TN没有表现出相同的变化趋势,可认为不存在相关性(P>0.05)。通过对比两种湿地退化区可以发现,同样受到人类活动的干扰而出现植被的退化,芦苇表现出对碳、氮、磷元素更强的维持平衡的能力。在芦苇湿地退化区,碳、氮、磷元素依然有着显著的相关性及较高的其线性拟合,这说明芦苇较强的维持碳、氮、磷元素平衡的能力,而在翅碱蓬湿地,碳、氮、磷元素不存在相关性,线性拟合较低,表现出较差的抗干扰能力,在翅碱蓬退化的情况下保持碳、氮、磷元素之间的平衡能力不足,人类活动对碳、氮、磷的含量的影响较大。
关键词:南疆;绿洲-荒漠过渡带;土壤;盐碱化
中图分类号S714文献标识码A文章编号1007-7731(2017)07-0081-05
Abstract:Themethodsoffieldsamplingandlaboratoryanalysiswereusedtoanalyze0~60cmsoilfromsamplingpointofgoldP.euphraticaforestofZepuCountyinSouthernXinjiang,YigalTownofShacheCounty,YarkantRiverBridgeofMengaitiCounty,andSharmaforestfarmofBachuCounty.ResultsshowaveragepHvalueofthesoillayersisover8.SaltionsincludeK+,SO42-,Cl-,Na+andHCO3-,hesaltcontentisin1.409g/kg~6.953g/kg.SoilpH,electricalconductivityandsaltionshavedecreasedwiththesamplingdepthincreases,andtheconductivity,SO42-,Cl-andCa2++Mg2+arestrongcorrelationwiththesamplingdepth,hecorrelationbetweenotherindexesisnotstrong.Thesoilsaltionsintheverticaldirectionshowthelaw,inthedistributionofhorizontaldirectionismorecomplex;Thedegreeofsoilsalinizationintheecotonebetweenoasisanddesertisnotserious,Carbonateandbicarbonateinsaltarethemost.Asthedepthincreases,heproportionofcarbonateandbicarbonateincreasesfirstlyandthendecreases.Theuppersoilismainlysodicsalinesoil,hemiddlelayerissodasalinesoil,andlowersoilistheprimaryofpuresodasalinesoil.Cl-/SO42-valueisbetween0~1,revealingtheupperismainlychloridesulfatesalinesoil,hemiddlelowerismainlysulphatesalinesoil.EC25andSO42-,Cl-,Na+aresignificantlypositivelycorrelatedinthe0~20cmlayer,alsoaffectedbyCO32-.ItissignificantlynegativelycorrelatedwithK+withlowcontent,butshowasignificantpositivecorrelationbetweenEC25andtotalsalt.
Keywords:SouthernXinjiang;Oasisdesertzone;Soil;Salinization
土壤的}碱化近年来越来越受到全世界科学家的关注,盐碱土分布十分广泛,全世界盐碱土约占土地总面积的10%,而我国的盐碱土地几乎为耕地总面积的1/3[1]。土壤的盐碱化已经直接对我国的农业产生了有害影响,同时也对生态系统和生物圈造成了压力,对经济的发展构成了威胁,制约着现代农业和畜牧业的发展[2]。经过国内外学者长期以来的研究,目前在盐碱化土壤的形成、分类、分布、利用[3-4]及改良等方面已经取得了丰富的成果。
新疆幅员辽阔,其面积占全国的1/6,具备丰富的土地资源,是我国重要的农业产区。但是新疆的土地受自然因素和气候条件的影响普遍存在盐碱化的现象,新疆各类盐碱土总面积约占土地面积的1/8,占平原地区土地面积的1/4[5]。以天山为界线,新疆分为北疆和南疆,南疆地域广袤,气候干旱,降雨极少,土壤盐碱化现象具有普遍性、严重性和多样性,塔里木盆地和塔克拉玛干沙漠周围有许多绿洲。因此,研究南疆绿洲-荒漠过渡带土壤的盐碱化对南疆盐碱化土地的综合利用和改良具有重要意义。
1研究区概况
南疆通俗指的是新疆境内天山以南的地区,包括昆仑山脉新疆部分,塔里木盆地甚至吐鲁番盆地。南疆的温带大陆性干旱气候非常典范,年降水量不足100mm。南疆有中国最大的沙漠――塔克拉玛干沙漠和中国最长的内陆河――塔里木河。
2土壤样品的采集和研究方法
2.1土壤样品的采集
2.1.1土壤采样点的布设通过综合考虑,选取了处于绿洲与荒漠过渡带的泽普县金胡杨林、莎车县依盖尔其镇、麦盖提县叶尔羌河特大桥和巴楚县夏玛勒林场4个采样区域,每个采样区根据区域的大小分别布设了相应数量的采样点,目的是为了所得到的数据具有代表性和特征性。
2.1.2土壤样品的采集和预处理采样点避开了道路两旁、田地边缘、化粪池旁等一些会造成干扰的特殊的地形部位。为研究各采样点盐碱化的特征,分0~20cm、20~40cm和40~60cm3层采取土样,从下向上依次采样,每层采样质量约1kg,放置在自封袋中,用记号笔标记编号、深度、时间,每个采样点须用GPS记录准确的坐标。
2.2样品的测定土壤酸度的测定采用pH计测定法,使用仪器为上海雷磁PHS-3C型pH计;土壤电导率的测定,使用仪器为上海雷磁DDS-307电导仪;土壤速效钾的测定采用1mol・L-1NH4Ac浸提-火焰光度法,使用仪器为ThermoIce3000Series火焰光度计;土壤钙和镁的测定采用EDTA滴定法;土壤交换性钾和钠的测定采用火焰光度法,使用仪器为ThermoIce3000Series火焰光度计;土壤碳酸根和重碳酸根的测定采用双指示剂-中和滴定法;土壤氯离子的测定采用硝酸银滴定法;土壤硫酸根的测定采用EDTA间接络合滴定法。
3结果与分析
3.1土壤盐离子含量分析由表2可知:土壤各层pH值均值>8、盐离子以K+、SO42-、Cl-、Na+、HCO3-为主,Na+含量很高,钠碱化度(ESP)>5%属于盐碱土范围[6];根据李述针对新疆情况提出的分级方案,测试土样属于碱土(ESP>40%)[7]。土壤含盐量在1.409~6.953g/kg,HCO3-在0.114~0.424g/kg,Cl-在0.005~0.062g/kg,SO42-在0.039~0.082g/kg,Ca2++Mg2+在0.073~1.153/kg,K+在0~2.49g/kg,Na+在0.91~3.393g/kg。研究地区表层土样含盐量最高,平均为4.728g/kg,中层次之,平均为4.216g/kg,下层最少,平均为3.434g/kg,且含盐量和深度呈负相关。
通过观察数据发现,土壤pH、电导率及盐离子随采样深度增加均有降低趋势,且其中电导率、SO42-、Cl-以及Ca2++Mg2+与采样深度呈负相关,其他指标相关性不强。在各项指标中,上中下层pH的变异系数1,认为强变异性;上中下层HCO3-、上中下层Cl-、中层K+、上中下层SO42-、上层Ca2++Mg2+、上中下层Na+和上中下层全盐量的差异系数介于0.1~1,认为中等变异性。总体来说,土壤盐分离子在垂直方向变化有规律,在水平方向分布情况比较复杂。
3.2土壤盐渍化程度及盐渍化类型分析根据刘国华[8]等的研究成果,对本研究的土壤样品进行分类(表3)。研究地区土壤盐分为1.409~.953g/kg,在非盐渍化和轻度盐渍化范围。由表3得知,0~20cm和20~40cm层有轻度盐渍化,,所占比例为30.8%~33.3%,远小于非盐渍化的66.7%~69.2%;40~60cm盐分含量均
参考相关文献[9-10],对土壤盐渍化进行划分,各盐分类型所占比例(表4)显示,研究地区的各个土层中CO32-+HCO3-/Cl-+SO42-值大于4的土样占16.7%~76.9%,为纯苏打盐土,CO32-+HCO3-/Cl-+SO42-值介于1~4的土样所占比例为23.1%~100%。表明上层土样以苏打盐土为主,中层全为苏打盐渍化土,下层以纯苏打盐渍化土为主。仅在上层出现8.3%的土样CO32-+HCO3-/Cl-+SO42-1,说明盐分中碳酸盐和重碳酸盐最多。同时CO32-+HCO3-/Cl-+SO42-值介于1~4的土样所占比例占总土样的66.0%,说明氯化盐和硫酸盐所占比例接近碳酸盐和重碳酸盐。随着深度增加碳酸盐和重碳酸盐所占盐分比例先增大后变小。
Cl-/SO42-的值在0~1,上层:氯化物-硫酸盐盐渍化土占91.67%,硫酸盐盐渍化土占8.33%;中层:氯化物-硫酸盐盐渍化土占38.46%,硫酸盐盐渍化土占61.54%;下层氯化物-硫酸盐盐渍化土占30.77%,硫酸盐盐渍化土占69.23%。在上层氯化物-硫酸盐盐渍化土为主,中下层以硫酸盐盐渍化土为主,且随着土壤深度增加,氯化物-硫酸盐盐渍化土的比例在减少,这与Cl-、SO42-与土壤深度相关性大小有关。
3.3土壤盐离子之间相关性分析土壤盐离子之间的相关分析有助于了解}分在土壤里的存在形态,进而帮助了解盐分的运动趋势[11]。通过Excel进行相关性分析,相关系数0.3为相关。再用Excel进行显著性分析,P
由于采样土壤中个别样品K+含量极低,接近空白,致使实验结果出现偏差,出现0~20cm、20~40cm层EC25与K+负相关的结果。总的来说,EC25与SO42-、Cl-、Na+呈极显著正相关,总盐与Cl-、K+、Ca2++Mg2+极显著正相关,EC25与总盐呈极显著正相关,与巴建文等[13]的研究结果基本一致。在0~20cm,EC25与CO32-极显著正相关,说明EC25除受SO42-、Cl-、Na+影响外,也受CO32-影响[12]。
4结论与讨论
本次采集的绿洲-荒漠过渡带土壤样品经实验测定土壤各层pH值均值>8、盐离子以K+、SO42-、Cl-、Na+为主,Na+含量很高,钠碱化度(ESP)>5%属于盐碱土范围;根据李述针对新疆情况提出的分级方案,测试土样属于碱土(ESP>40%)。土壤含盐量在1.409~6.953g/kg。土壤pH、电导率及盐离子随采样深度增加均有降低趋势,且其中电导率、SO42-、Cl-以及Ca2++Mg2+与采样深度相关性较强,其他指标相关性不强。研究表明该地区土壤盐分离子在垂直方向变化有规律,在水平方向分布情况比较复杂。
通过分析结果表明,南疆绿洲-荒漠过渡带土壤上层盐渍化程度不严重,盐分中碳酸盐和重碳酸盐最多,随着深度增加碳酸盐和重碳酸盐所占盐分比例先增大后变小。上层土样以苏打盐土为主,中层全为苏打盐渍化土,下层以纯苏打盐渍化土为主。经分析,Cl-/SO42-的值在0~1,表明在上层氯化物-硫酸盐盐渍化土为主,中下层以硫酸盐盐渍化土为主,且随着土壤深度增加,氯化物-硫酸盐盐渍化土的比例在减少,这与Cl-、SO42-与土壤深度相关性大小有关。可有针对地采用技术手段对盐碱化现状进行改良。
总的来说,EC25与SO42-、Cl-、Na+呈极显著正相关,在0~20cm层EC25除受SO42-、Cl-、Na+影响外,也受CO32-影响,在K+含量极低的情况下可能出现与K+显著负相关情况,但是EC25与总盐呈极显著正相P。因此,在南疆绿洲-荒漠过渡带用电导率表征土壤含盐量具有可行性[13]。该区域HCO3-和Ca2++Mg2+很高,总盐与Cl-、K+、Ca2++Mg2+极显著正相关。分析上、中、下3层的相同盐离子含量的相关性,结果表明:HCO3-在上层与下层的含量呈现极显著正相关,SO42-在上层与中层的含量呈现极显著正相关,在中层与下层的含量呈现极显著负相关,总盐在上层和下层的含量呈现极显著正相关。
由于南疆绿洲-荒漠过渡带地域广大、地形复杂、分布零乱,受自然、人为影响具有多样性,导致盐碱化特征并不完全重合。
参考文献
[1]孙振元,刘金,赵梁军,等.盐碱化绿化技术[M].北京:中国林业出版社,2004.
[2]张杰.大庆地区土壤理化性质及盐碱化特征评价[D].哈尔滨:东北林业大学,2010.
[3]陈模,杨绍斌.燕誉盆地盐碱化土壤的形成和改良[J].国土与资源研究,1992(3):46-49.
[4]蒋海秀.渭南卤阳湖盆地土地盐碱化成因分析及治理方案研究[D].杨凌:西北农林科技大学,2013.
[5]杨柳青.新疆盐碱土资源与综合治理[J].土地通报,1993(5):15-17.
[6]熊毅.盐碱土工作的回顾和展望[A]//盐碱良论文选[M].济南:山东科学技术出版社,1976:1-16.
[7]李述刚,王周琼.荒漠碱土[M].乌鲁木齐:新疆人民出版社,1988:20-50.
[8]刘国华,海米提・依米提,王庆峰.于田绿洲土壤盐分特征分析[J].水土保持研究,2009,2016(3):261-263.
[9]中国科学院新疆生态与地理研究所.新疆维吾尔自治区水利厅农牧水利处.新疆馆区土壤盐渍化及改良治理模式[M].乌鲁木齐:新疆科学技术出版社,2008:76.
[10]卢磊,乔木,周生斌,等.新疆渭干河流域土壤盐碱化及其驱动力分析[J].农业现代研究,2011,32(3):358-359.
[11]王合云,李红丽,董智,等.滨海盐碱地不同造林树种林地土壤盐碱化特征[J].土壤学报,2015,17(3):48-56.
[12]刘韬韬,熊友才,杨岩,等.玛纳斯河下游绿洲荒漠交错带土壤盐碱化特征分析[J].石河子大学学报(自科版),2012,,30(2):186-192.