高中作文网

数控车床(6篇)

时间: 2024-01-11 栏目:公文范文

数控车床篇1

关键词:装配工艺卡;故障柜;故障表;PLC程序;几何精度检验;工作精度检验

中图分类号:G712文献标志码:A文章编号:1674-9324(2014)07-0089-03

由于数控系统的更新换代,许多职业院校和我们学院一样为了适应市场对人才的需要,购买了很多数控机床,致使一些数控机床被闲置而没有用处。为了适应各种数控大赛和教学的需要,我们将一些闲置数控车床进行相应的改造,使之成为一台数控维修、调试与加工的综合平台。数控车床维修平台主要完成机械拆装与调试、电气接线与排故、参数设置与调试、精度检验四大块。现将改造过程和应用与大家共享,以求有更好的改进效果。

一、机械拆装与调试

这一部分我们主要利用数控车床原有机械部件按《装配工艺卡》进行拆装与调试练习。主要有卡盘的拆装、Z轴进给部件装配与调试、X轴进给部件装配与调试、四方刀架装配与调试和尾座拆装五个项目。以Z轴进给部件装配与调试为例,我们制订了如下装配工艺卡:

二、电气接线与排故

此部分可以分为两个项目:一是可以将电气柜中部分线路拆掉,然后练习接线;二是将电气柜中故障点做成故障柜,有针对性地排故。下面主要对第二个项目做详细说明。

此项目需要对电气控制柜进行了改装,目的是有针对性地设置故障和排除故障。一共设置18个故障点,将故障点用引线接在故障柜内。故障点对应的电气图如下,共有GSB1~GSB18个故障。

故障柜接线图如下图所示,GSB开关均用导线引到故障柜中,利用按钮设置故障。

对应的故障对照表如下:

这些故障及接线不是固定的,而是可以根据需要改变接线图及故障表。

三、参数设置与调试

这部分内容主要在CNC操作面板和伺服控制器上进行,主要有如下几个部分:

1.开机前的检查。

2.设置数控车床相关的参数。

3.数控系统、变频器、伺服参数的调整与修改。

4.PLC程序阅读。

5.数控车床功能检查及调试。

对每部分进行细化,要求按表格操作并填表。以“数控系统参数调整”子项目为例说明如下:

查看数控系统参数,并填写参数设置表(以928TC系统说明):

四、精度检验

按照国家标准GB/T8324.1-96中规定,可根据实际工量具进行数控机床精度检验。主要包括如下几个方面:

1.几何精度检验。

2.工作精度检验。

这部分内容主要根据我们现有工量具进行项目设置,按操作方法进行检验,并完成精度数值的计算。

实践证明把闲置数控车床改造成为数控维修平台是非常经济实惠的,并且还保持了原有数控车床的加工功能,极大地拓展了数控车床的应用范围。每个维修项目的不断细化对研究数控机床和加强学生的职业技能有深远的意义。

参考文献:

[1]邓三鹏.数控机床故障诊断与维修[M].北京:机械工业出版社,2009.

[2]夏庆观.数控机床故障诊断与维修[M].北京:高等教育出版社,2006.

[3]GSK928TE数控系统使用手册[Z].

[4]广州数控维修手册[Z].

数控车床篇2

关键词:加工系统;设计;立式数控车床

转向节是汽车上应用最重要的零件之一,其形状复杂并且受到的集中应力也是最大的,因此其部件结构要求具有较好的机械能。转向节加工质量会对车辆的安全性以及操作性造成呢个直接影响。汽车的数量在随着人们的需求量而不断的增加,因而转向节的生产要求也不断的攀升,其生产效率的提高是目前转向节生产的核心问题。由于结构复杂,转向节的加工有一定的难度,尤其在法兰端面以及杆部,尺寸以及位置精度难以把控。传统的生产方式都是采用卧式普通车床或者简易车床对法兰端面以及转向接待杆部进行加工,对简易车具进行设计,在尾座顶尖同车具之间通过尾座顶尖对转向节进行固定,通过车具对转向节进行拨动以此保证旋转。但是该种方式存在严重的缺陷,首先,工件不易加装;其次,由于配重较小导致车具无法有效提高钻速;设备在加工生产中效率地下也是无法避免的缺陷。由于受到传统工艺的限制,以及诸多因素的影响,不得不开发出一种新型的设备用以解决转向杆以及法兰端面的不足,立式数控车床应时而生。该设备在原有机床性能上,能够完美的进行转向节的加工。无需高强度的夹装劳动,可谓一举多得。

1方案分析

1.1整体式转向节特性分析

整体式转向节在形状上像羊角,具有复杂的结构;以锻件作为工件的毛坯,具有较大的加工余量,尤其在法兰盘根部的圆弧处;最后由于工件的特性决定了其质量较重,因此具有较大的转动惯量,定位加紧较为困难。

1.2方案

在转向节的生产过程中,根据加紧要求以及工艺特性,其生产所用的专用立式机床在机构上采用了主轴偏置的结构,以传统的立式数控车床作为基础,加装了尾座顶尖结构,并根据转向节的结构特征设计出专用的加工车具,形成新型机床用于转向节的高效加工,同时在功能上仍然同通用数控车床相同。

1.3工作的循环

主要的工作步骤和顺序为:安装工件,定位夹紧,数控滑台快移,X、Z轴联动,同时主轴旋转,完成外圆加工,数控滑台快退至原位,伺服刀架换刀,数控滑台快移,X、Z轴联动,完成工件外圆各槽的加工,数控滑台快退至原位,伺服刀架换刀,数控滑台快移,X、Z轴联动,完成工件各螺纹的加工,数控滑台退至原位,松卡,卸下工件,进入下一循环。

2转向节专用立式数控车床部件设计

2.1主轴箱设计

2.1.1主轴箱结构设计

本机床为立式结构,主轴箱就是传统意义上的床身,其作用一是安装主轴及其传动系统,二是支撑立柱即在其上安装的纵横滑板和电动刀架。因此要求主轴箱具有据够的刚性,结构必须合理,长期使用不变形。

2.1.2传动系统

确定传动比。首先需要保证数控立车的传动比在1:10且转速达到63r/min至1000r/min,那么其在转向节的加工过程中才能保证高效的同时仍然具有通用车床的功能。确定传动路线。在车床的使用中主要的传动路线如下:由伺服电机经减速箱至皮带轮,由皮带轮对主轴单元进行驱动,以此达到驱动主轴旋转目的。对主轴的结构进行分析,其结构采用了较为灵活的单元结构,在制造、维修以及安装上都极大的方便了用户。在单元结构的选择上主轴需要充分考虑到转向节加工的特殊性,以此保证主轴结构能够同该特殊件加工相适应。首先,在刚性要求上要予以满足,保证旋转精度的稳定、长久;其次,具有分油装置以及夹紧油缸。最后,能够实现快速切换专用车具、动力卡盘,实现数控立车通用和专用之间的切换。根据以上分析,主轴单元选用规格标准为50的车主轴,能够满足高精度、高刚度的要求。

2.2进给系统的主要设计概述

2.2.1纵向设计

进给传动系统中的纵向系统主要包括滑板以及滚珠丝杠传动装置。在其滚动导轨上设置有纵向的滑板,其能够沿着导轨进行纵向运行。该导轨的配置主要采用了滚珠滚动导轨,且为重型导轨,承载力较大,具有很强的刚性。伺服电机能够直接经过联轴对滚珠丝杠的螺母副进行驱动,从而使得滑板能够沿着导轨进行纵向运动。

2.2.2横向设计

在系统中同滚珠丝杠之间发生作用主要依赖于横向滑板,横向滑板该系统主要通过横向滑板同滚珠丝杠的传动副发挥作用,横向滑板主要设置的位置为横向导轨,其能够沿着纵向导轨向横向导轨做横向运动。横向导轨主要采用了滚珠滚动型导轨,且导轨为重载型导轨,具有较大的承载力和刚性。同纵向导轨相同,其滚珠丝杠的螺母副可以直接受到伺服电机的驱动,从而使得滑板做横向运行。

2.3工装夹具的设计

2.3.1顶尖的设计

顶尖至机床用于回转、定位以及夹紧的重要部位,能够在加工过程中,对工件进行固定,顶尖的部件主要出于设备上部,如果工件位置正确,那么在油缸的作用下,顶尖会随着设备向下移动,令定检能够将工件上部的顶尖孔顶紧,用以对工件进行定位和夹紧。顶尖会随着主轴的旋转而旋转,这就是机床主运动。在该部件的设计中首先应当对夹紧力进行确定,将却东油缸规格予以确定,保证夹紧可靠;由于转向节的不平衡性特征,就要求顶尖具有足够刚性,保证长久稳定的回转精度。

2.3.2车具设计

由于工件的形状较为特殊,因此异型性是转向节的重要的特性,由于结构问题,因而其工件具有不平衡的问题,这就为工件的加工带来了不小的困难,首先需要应用刚性差的定位顶尖孔,利用上顶尖孔和下顶尖孔将工件定位夹紧。上顶尖孔具有可移动性是由单独的移动部件构成,下顶尖孔则是固定于主轴之上。其次,由于转向节不具有规则加紧面,而顶尖的形状也各不相同,想要保证车具的通用性,必须使之具有相当的柔性。不平衡的工件使得车具必须设置成为能够调整的。最后,通过使用液压夹紧装置,并将编码器设置在主轴上,用以适应车床的螺纹功能,并子啊车具上加设夹紧油缸。

3结束语

该机床在使用后,通过实践结果表情性能完全可以达到设计要求,并且在进行完善后开始小批量的予以生产,得到了使用者的一致好评。

参考文献

[1]董彦,郑子军,胡如夫.数控车床部件建模与动力学优化设计[J].煤矿机械,2007.

数控车床篇3

关键词:数控车床普通车床实习教学操作技能

对职校的学生来说,先进行普通车床的练习,再进行数控车床的练习是大有好处的。

首先,是尺寸测量和车刀刃磨。操作普通车床,熟练的操作技能并不是决定数控机床操作技能水平高低的主要因素,真正决定操作者技能水平高低的是尺寸测量和刀具刃磨。一个零件的配合尺寸,往往仅有0.03mm的公差范围,稍不留神就造成废品,学生必须勤学苦练。刀具刃磨更是重中之重,有句老话说:“车工一把刀。”一把车刀的性能好坏,直接关系到产品的质量保证,而车刀的性能好坏,关键是在车刀的刃磨,只有不断地练习磨刀,不断地车削练习,学生才能真正体会车削时刀具的角度应如何变化,才能适应加工各种不同工件的要求。

其次,普通车床的操作练习有利于提高学生操作数控机床的水平。普通车床上有多个操作手柄,通过普通车床的实操练习,学生会成为身手敏捷、反应快速、动作准确连贯的熟练操作者。避免了在数控车床上出现刀具撞工件、撞卡盘等事故的发生。

另外,由于加工的工件千变万化,材质、硬度、刀具材料、机床精度等情况不同,切削用量就要相应变化,而经验丰富的车工,可以在普通车床上通过接触手柄,凭借“手感”就能直接察觉切削用量的合理与否;通过声音、振动、铁屑形状及颜色等表现觉察加工操作的变化、车床是否存在事故隐患,为以后在数控车床上切削用量的合理选择、操作技能的提高打下良好的基础。

如上图所示零件,这种手柄类零件最适合数控车床车削加工,我们先来分析手柄的加工工艺。

一、零件图分析

手柄零件表面由圆柱、圆弧、倒角等结构组成。该零件尺寸精度要求不高,但对圆弧表面要求平滑过渡,光洁美观。

二、确定零件装夹方案

确定工件中心线和制定加工步骤。根据工件形状、技术要求、加工特点来确定工件的加工步骤和编程时刀具的走刀路线。该零件的台阶面单向递增,宜采用一次装夹车削,然后切断。工件装夹在三爪自定心卡盘上,利用普车经验进行划线盘找正。在普通车床实习操作中,这类工件的加工步骤一般是:第一步加工R7圆弧尺寸和φ14mm外圆,第二步加工φ21mm尺寸,第三步加工φ28mm外圆尺寸,第四步加工R15圆弧尺寸。而在数控车床上加工此零件,同样可采用普通车床的加工步骤加工。在编制程序时,第一步用G71封闭切削循环加工R7、R60和R40圆弧,第二步用G71外圆粗车循环加工φ20mm外圆,第三步用G75切槽循环加工φ12mm台阶。

三、车刀角度和车刀材料的选择

我们可以选用一把尖刀来粗精车外圆和圆弧,一把切断刀来切槽和切断。尖刀要求主副偏角要足够大,否则加工时会发生干涉现象,这些都是我们在普通车床训练中需要学习的内容。因此教师要求学生在普通车床训练中,除了刻苦学习外,还要注意知识的积累、总结、分析,根据在普通车床训练中常出现的问题,提高自身的操作技能。

四、切削用量的选用

切削用量的合理选择与机床、刀具、工件材料和加工工艺有关,这就要求操作者在切削加工时,根据经验灵活掌握、运用。对于此零件,根据普通车床的经验,我们以切削用量三要素选择为:粗加工时ap=1~2mm,f=0.2mm/r,vc=600r/min;精加工时ap=0.2mm,f=0.1mm/r,vc=800r/min。

五、各坐标值的计算

在对零件进行切削加工之前,不管是普通车床还是数控车床,操作者都要根据零件的轮廓形状几何要素,对零件进行数学计算。如图中的P1~P10都是基点坐标,这些基点都是编程中的重要数据。

数控车床篇4

关键词:改造;数控车床;质量控制

如果对所用的普通车床和长时间使用的车床不进行改造,仅购买新的数控车床,则会增加许多生产厂家设备方面的成本。所以生产厂家对普通车床及长时间使用的车床进行数控化改造是必经之路。

由于进行数控化改造对于改造厂家来说,较杂又乱,但如何对改造的数控机床进行质量控制则是我们一直以来需要探讨的问题,在此谈一下如何进行改造数控车床的质量控制。

普通车床数控改造分为新机改造和旧机改造,新机改造是用户购买普通车床或普通光机(指仅带床头箱和纵、横向导轨的车床),改造厂家根据其要求进行数控化改造。旧机改造是指用户将已经使用过的普通车床或数控车床进行翻新并进行数控化改造。其中旧机改造包括大修车床改造和用户旧机部件改造。在此浅谈改造数控车床在机械方面的质量控制方法、着重控制点和检验过程。

1新机改造和旧机大修车床改造都必须经过如下相同改造

(1)更换x轴、z轴丝杆、轴承、电机。

(2)增加电动刀架和主轴编码器。

(3)增加轴向电机的驱动装置,限制运行超程的行程开关,加装变频器(客户需要)以及为了加工和安全所需的电气部分。

(4)x轴、z轴的丝杆两端支承面的配刮、滚珠丝杆副托架与床鞍的配刮、床身与床鞍导轨副进行配刮。

(5)据需要增加防护设施,如各向丝杆的防护罩,安全防护门,行程开关的防护装置。

2新机改造和旧机大修车床改造的不同点

(1)新机改造的主轴和尾座部分未进行改动,主轴部分和尾座部分无须进行再改造。

(2)旧机大修车床由于经过长时间使用,导轨已磨损,为了保证大修后,能继续长时间使用而不变形,必须经过淬火工序,然后磨导轨,且磨导轨后必须保证导轨硬度≥hrc47。

(3)旧机大修车床应根据客户需要对主轴部分和尾座部分进行改造和调整。

3新机改造和大修机床改造的精度检验是检验的重要项目

精度检验执行jb/t8324.1-1996《简式数控卧式车床精度》。

4新车床改造的精度质量控制如下

(1)铲刮检验。新车床改造经过对x轴、z轴的丝杆两端支承面的进行配刮、对滚珠丝杆副托架与床鞍进行配刮、床身与床鞍导轨副进行配刮等。车床的主轴、尾座部分未拆动。检验方法如下:用配合面进行涂色,相互配合面进行结合,并相对摩擦,然后对铲刮面进行铲刮点数检验,并对结合处用塞尺进行结合程度检验,其中刮研点不得低于6点/25*25mm,0.03mm的塞尺塞结合处,不入。

(2)丝杆与导轨平行度检验:装配丝杆时,丝杆与导轨的平行度必须≤0.02mm。

(3)精度检验的g1项中导轨在垂直平面内的直线度(只许凸)应由普通车床厂家进行保证,不作为重点检验项目。

(4)精度检验中的主轴部分精度g4、g5、g6项也应由普通车床厂家进行保证,不作为重点检验项目。

(5)g11项床头、尾座两顶尖的等高度由普通车床厂家进行保证,不作为改造厂家质量控制的重点项目。

5用户大修车床改造的精度检验

由于进行了磨导轨,基准面已变动,所以精度检验中的所有项目必须进行检验,且应严格进行控制,以保证改造后的使用性能。

6大修车床改造和新机改造的其它质量重要控制点

(1)锈蚀检查:各横、纵向导轨面,主轴、主轴法兰盘,尾座空心套和各

(2)外露非油漆表面都必须采取防锈措施,如清洗干净后,用润滑脂等进行防锈检查:铲刮面、丝杆和轴承在进行装配前必须清洗干净,不得留有红丹粉、铁削和其它脏物质;电箱内侧、防护罩内侧无灰尘、脏物。

(3)渗漏检查:大修车床改造的主轴轴承和齿轮等必须保持润滑,大修车床改造和新车床改造的轴向丝杆和轴承必须有润滑,必须有冷却装置,且以上润滑和冷却中接头处,油、水箱等处都不得有渗漏现象。

(4)机床噪声、温升、转速、空运转试验:

①主轴在各种转速下连续空运转4min,其中最高转速运转时间不小于2小时。整机空运行时间≥16h,对圆弧、螺纹、外圆、端面等循环车削进行模拟空运行试验。

②主轴轴承温度稳定后,测轴承温度及温升滚动轴承:温度≤70℃,温升≤40℃;滑动轴承:温度≤60℃,温升≤30℃。

③机床噪声声压级空运转条件下≤83db(a),且机床有无不正常尖叫、冲击声。各轴方向进给运动进行应平稳,无明显振动、颤动和爬行现象。

④机床连续空运转试验在规定连续空运转时间内,无故障,运行可靠,稳定。

(5)用户更换部件(包括机床部分的维修)的改造:由于车床更换部件的改造项目较多,主要是更换主轴轴承、轴向丝杆、轴向电机、轴向轴承和系统。

①更换主轴轴承:由于更换主轴轴承是为了保证加工外圆和端面的精度,必须在更换轴承后,先行检验主轴的噪声在无异常的情况下,整机噪声声压级不得超过83db(a),然后进行加工精度检验,并检验加工工件的表面粗糙度。

②更换轴向丝杆检验:检验各向位置精度,确保在规定范围内,跑机运行达到轴向运行无不正常的冲击声和杂音。更换轴向电机:由于其它项目未进行改造,则检验仅对跑机运行的噪声进行检验,轴向运行无不正常的冲击声和杂音。检验其轴向反向间隙,以防在装配中由于装配引起反向差值不符合要求。

数控车床篇5

【关键词】数控车床PLC影响因素

数控车床作为一种集成了自动控制技术、计算机信息技术、机械制造技术等现代高新技术的先进加工设备,以其高自动化和高效率的特性在工业制造等行业受到了广泛运用。其工作精度高,能够批量生产精密仪器,经济效益好。在数控车床加工制造的过程中,精度好坏往往直接决定了产品品质,为适应社会的高速发展,对数控车床精度的要求也在不断的提高。故而,对数控车床加工精度影响因素的分析以及通过对这些因素的提高成为当下工制造亟待解决的问题。

1数控车床PLC加工的特点

与普通车床相比,数控车床加工更为精确,操作者只需要输入相应数据便可获得较为精准的产品,通过对计算机信息技术的应用,数控车床在加工复杂零件时能够达到普通车床所达不到的效果,即便是相当复杂的产品通过数控机床都能够精准的生产出来,除此之外,数控车床所需要的前期准备工作较少,只需安装待加工原材料以及输入所需参数即可简单生产,在生产制造的过程中,数控机床由于利用了较为先进的机械技术以及自动化技术,生产所需的时间也大大减少,操作人员的工作强度将得到很大程度的降低;然而,由于数控车床的科技性较强,对其操作人员相较普通车床也更高,原本操作普通车床的工人需通过一段时间的学习才能够掌握其使用技巧,而其维修人员也需要有更高的技术素质,并且数控车床的高精密性决定了其维修所需的成本也更高。企业在应用数控车床时应充分考虑到数控车床的特点,并根据自身的需要对车床进行挑选。

2数控车床PLC加工精度的影响因素

现代的数控机床一般都是通过伺服电机对滚珠钢丝的驱动来实现的,采用半闭环控制和伺服进给控制的数控车床工作时,电机中反方向运动的丝杠会导致空隙的空运转,在轴承与轴承座之间的空隙中就会出现反向间隙误差,在外力的配合作用下,机床传动和运动部件将发生弹性形变,导致正向运转误差和反向间隙共同影响部件均匀受力,故而一旦滚珠钢丝出现传动误差,车床的加工精度将会受到较大的影响。除此之外,在数控车床加工的过程中,由于车刀和待加工材料间或数控车床在运行内部会摩擦产生热,热量积累导致车床发生形变,在此过程中车床的加工精度将会有很大的降低;有些数控车床在生产时由于技术不够精良等原因会导致车床本身出现较大的几何误差,这种误差易于发现但是对生产效率的影响较大;车床在加工过程中,刀具经过反复利用,难免会产生磨损,数控车床要求刀具硬度要高、耐磨性和耐热性要好,即便如此在经过反复多次的利用之后,刀具磨损是不可避免的,一旦刀具有所磨损,加工的精度就会在很大程度上降低;刀具上可能出现误差的另一个原因是刀具的几何参数本身就存在误差,这一点会导致同种类型的工件加工在更换了刀具前后会出现误差;待加工材料在加工之前需要由操作人员安装到车床上,人工操作的安装过程难免会出现误差,对工件的加工也会有一定影响;此外还有很多其他对车床加工精度有所影响的因素,这其中,伺服给进系统误差和刀具几何误差导致的精度降低最为常见,是主要的误差来源。而通过国内外的调查我们也可以看到,在正常的加工条件下,数控车床自身的精度不足是导致加工工件精度较低的主要原因,因此在提高数控车床加工精度的探索中,技术人员应当着重研究如何提高车床本身的精度,从制作和后期使用上提高车床精度。

3数控车床PLC加工精度的优化改进

为减少数控车床在应用中可能产生的误差,提高产品精度,技术人员应当从各个会对产品精确度产生影响的因素的角度来分析。但首要的是要最大限度的降低刀具几何误差以及伺服系统给进误差。对于刀具几何误差,要优先选择硬度高、耐磨性好且耐高温的金属作为制作刀具的材料,并且定期更换已经因磨损而老旧的刀具,在此基础上,要注重运用技巧来尽力减小几何误差。

例如,技术人员可以采用“一刀多尖”的方法,将一把车刀在某一道工序中的运用从局限于某一表面扩展到多个不同的工件表面上,作为多把车刀来进行使用,这种方法不但能够提高工件加工的精度,还可以在很大程度上减少消耗在车刀上的成本,槭迪指霉程,需要操作人员对数控车床进行重新编程,明确每一把车刀和每一种刀尖都有不同的表示方法,即不仅对车刀编号,还要对刀尖编号,在使用时通过分别输入车刀和刀尖的编号来进行使用;此外,目前数控车床的数控系统正在推广的“刀尖圆弧半径补偿”的功能也在减少误差的程度上有很大的帮助,该功能通过对带有圆弧的刀尖的运用,可在很大程度上补偿可能会产生的误差,切实提高轴类零件圆弧表面的加工精度,这项技术将会减少当前工件的生产切割过程中某一边过切而另一边少切的情况,利用补偿的方法降低刀具几何误差。而对于伺服系统给进产生的误差误差,技术人员应当根据实际情况,依据轴向尺寸的变化改变轴向位移的长度,在此基础上进行被加工零件加工程度的重新编写。当然,类似的改进方法还有很多,但主要目的都是为了提供车床自身的精度,通过多种补偿或减少误差的方式来在一定程度上解决由于目前技术基础不足导致的车床本身精度不足的问题,从这个角度考虑,技术人员可以尝试研究如何生产出精度更高的数控车床,从根本上降低加工的误差,以便更好的提升数控车床的加工精度。

总之,为满足当下社会发展的需求,机械零部件的精度要求将飞速提高,数控车床需要应对其改变不断地更新换代,如何从各种角度提高数控车床加工的精度是整个工业制造行业所要面对的共同问题,企业不能拘泥于短期发展的需求,而是要放眼整个行业的发展,注重新革新的不断升级,提高车床的加工精度,做到走在发展地前列,才能充分地提升自己的经济效益,以获得更多利润,同时推动社会科技的进步,为社会的发展尽自己的力量。

参考文献

[1]丁美玲.数控车床加工精度的影响因素分析及对策[J].机电信息,2014(15):52-55.

[2]陈方磊.提高数控车床加工精度的几点思考[J]科技咨询,2015,13(12):80-83.

[3]贾东庭.数控车床加工精度的影响因素及提高措施[J]机械工程师,2015(09):105-109.

作者简介

马海杰(1987-),男,河北省邯郸市人。硕士学位。现为山西机电职业技术学院数控工程系教师、助理讲师。主要从事数控机床装调与维修方面的科研与教学工作。

数控车床篇6

一,编程心得其一.我厂生产的产品中对精度要求较高的一个加工工序是如图(1)所示的内孔和内槽加工.对于这一个工序的加工,在编程的思路上我采用的是:阶梯内孔加工加工端面切内槽全部倒角退回起始点程序结束.

在这一工序中的阶梯内孔加工过程中,发现内孔车刀的刀刃在退出时总是发现被损坏的.开始以为是吃刀量或走刀量过大的原因造成的.可当无论把吃刀量改怎么小,损坏刀刃的现象照旧,只是损坏的刀刃,随吃刀量的变小而变小.从加工的内孔面质量来分析,车刀刃在加工过程中并没有损坏,因此,车刀应是在加工完毕退刀的时候被损坏.我以是认真分析阶梯孔的加工程序,阶梯内孔加工程序清单如下:

内孔刀为一号刀,用75°内孔车刀.编程以工件端面中心线为编程原点

N0000M3S300主轴正转300转/分,换1号刀,执行1号刀补

N0010G0X86定位到起始点

N0020X89.5Z5靠近工件

N0030G1Z-83开冷却液,粗加工内孔,F=75mm/min

N0040G0X88刀具离开工件

N0050X90.05

N0060G1Z-83半精车内孔,F=45mm/min

N0070G0X88刀具离开工件

N0080X93

N0090G1Z-10加工阶孔,F=75mm/min

N0100G0X88刀具离开工件

N0110X96.3

N0120G1Z-10加工阶孔,F=75mm/min

N0130G0X88Z5刀具离开工件

……

在加工中,当程序执行完N090时,暂停观察车刀,刀刃已经被损坏,而观察内孔加工面的粗糙度却正常.这就是说是在执行G1这一直线插补指令时,车刀还是好的;而问题是在执行N0100程序时的G0快速定位指令.G0快速定位指令是使刀具以快速移动速度移动到指定位置.经过分析,发现在执行G1这一直线插补指令时,车刀以75mm/min的速度切削的轨迹是螺旋状的.由于G0快速定位指令在这里的执行条件是当Z=-10;所以,当车刀到达Z=-10这一点的一瞬间,G0指令就开始执行;而此时的刀刃还在切削中.G0指令这时将车刀以快速倍率迅速退出.这就是造成车刀损坏的原因.问题的根源找到了,解决的方法就是在N0100前增加一个G4定时延时指令,使车刀先退出G1的直线插补指令,然后再执行G0这一快速定位指令.这样程序编写变成如下:

……

N0090G1Z-10F75加工阶孔,F=75mm/min

N0092G4D2延时2秒

N0100G0X88Z5刀具离开工件

N0110X96.3

N0120G1Z-10加工阶孔,F=75mm/min

N0122G4D2延时2秒

N0130G0X88Z5刀具离开工件

……

通过这样加入G4定时延时指令,车刀再也没有损坏的现象.

编程心得其二,在加工内槽时,总是发现槽底的圆柱度误差很大,竞达到0.3mm.这是工件的技术要求所不允许的.用于内孔切槽刀车刀是刀宽为4mm的切刀.开始怀疑是切刀装得不平,然而,经过多次装刀调整,这个问题仍得不到解决.以是从编程上找原因.切槽编程清单如下:

N0300G0X88Z100S200

刀具回到起始位置,设主轴转速为

200转/分

N0310T33换3号刀,执行3号刀补

N0320G0X88Z-12M8刀具靠近工件,开冷却液

N0330G75X102.15W4I1K0.2E4F50切φ102槽

N0340G0X101靠近槽底

N0350G1X102.2将槽底切至102.2mm,F=50mm/min

N0360W4消除槽底刀痕,降低粗糙度

N0370G4D1延时1秒,加工完一周

N0380G0X88离开工件

按照这个程序加工,槽底总是外端大,里端小.经分析,N0360程序的执行条件是当X=102.2,这样槽底里端就存在一个斜面.在槽外端执行N0370程序却有一个G4的定时延时指令.这就是造是槽底的圆锥度误差过大的原因.在N0370后插入如下两段程序,使得车刀在槽底有一个来回的切削运动:

N0372G1W-4切削返回

N0374G4D1定时延时1秒

    【公文范文】栏目
  • 上一篇:会计述职报告范文(6篇)
  • 下一篇:房地产投资协议书
  • 相关文章

    推荐文章

    本站专题