高中作文网

高分子材料的制备方法范例(12篇)

时间: 2024-02-27 栏目:公文范文

高分子材料的制备方法范文篇1

关键词:纳米材料的特性;制备方法;应用

DOI:10.16640/ki.37-1222/t.2016.13.198

1纳米材料的特性

当物体的粒子的直径减小到纳米这一数量级时,能够使一些材料的声、、电、磁、热性等呈现一些新的特性。对纳米体材料的一些特性可以用“更轻、更高、更强”进行概括。

2制备方法

2.1物理制备纳米材料的方法

在早期常将较粗的固体物质进行粉碎,如超声波粉碎法、蒸气快速冷却法、蒸气快速油面法等方法。随着时代的方法近年来出现了一些新的方法,如旋转涂层法,通过控制转速来获得不同空隙的颗粒.然后再在其表面积一层膜,最后经过热处理的方法得到纳米颗粒的阵列。

(1)真空蒸发获得纳米材料。利用电弧高频加热对需要处理的固体材料进行加热,使之形成等离子体,然后对该材料进行骤冷,最后凝结成纳米材料。纳米材料的微粒径可通过改变通入气体的种类或压力等方法进行控制。具体操作过程是将需要蒸发的材料放人柑锅中,先更高程度的真空,然后向里面注人少量的惰性气体,然后再加热,最后蒸发形成纳米微粒。

(2)利用等离子体蒸发凝聚获得纳米材料这种方法是把一种或多种固体颗粒注人到等离子体中,使之蒸发,再通过骤冷装置获得纳米微粒。

2.2化学制备纳米微粒的方法

化学法制纳米材料的方法是通过适当的化学反应,把分子或原子制备成纳米物质,其中包括化学气相沉积(CVD)法、化学气相冷凝法(CVC)等。

(1)化学气相沉积法是目前最广泛的方法,这种方法是在一个加热的衬底上,通过几种气态元素形成纳米材料的过程,这种方法可以可分成热分解反应沉积的方法和化学反应沉积的方法。使用这种方法能均匀的对整个基体进行沉积。缺点是衬底的温度比较高。随着科技的进步,由此产生了许多的新技术,比如等离子体增强化学气相沉积方法及激光诱导化学气相沉积的方法等。

(2)化学气相冷凝法制备纳米材料是通过热解有机高分子获得纳米颗粒。

(3)化学沉淀法的方法是通过在金属盐类的水溶液中适当控制条件使沉淀剂与金属离子进行反应,产生难溶化合物形成沉淀,然后经分离、热分解得到纳米微粒。化学沉淀法有多种如直接沉淀法、共沉淀法等。

2.3物理化学方法制纳米材料

一般在实践情况下是不会只用物理或只用化学方法进行制作纳米材料的,很多是结合了物理和化学两种方法的,主要方法有

(1)热等离子体法是用等离子体将金属等粉末融化后进行蒸发然后再冷凝,从而制成纳米微粒,这种方法是制作金属台金系列纳米微粒比较有效的方法。比如用电弧的方法混合等离子体,它能有效的弥补了传统法存在的一些缺陷,如等离子枪功率小、使用年限比较短和热转化的效率比较低等一些缺点。

(2)利用激光加热蒸气的方法,这种方法是用激光快速加热热源,使反应物分子内部能够很快地吸收能量和传递能量,气体在很短的时间内就能反应的长大和终止.这种方法可以很快生成表面洁净纳米的颗粒。

(3)利用辐射合成法来制作纳米颗粒,这种方法是用用辐射台成法制备纳米材料,它的制备工艺一般是比较简单的,可以在常温常压下进行操作,制备周期时间比较短,生成的粒度比较容易易控制,生成的效率也是较高的,使用这种方法不仅可制备纯度比较高的金属粉末,还可制备各种氧化物纳米粒子以及纳米复台材料,所以纳米材料的辐射法制备近年来得到了很大的发展。

3纳米技术的一些技术应用

(1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。

(2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,最终能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。

(3)最新型的纳米侦察卫星是采用的是纳米元件和按照纳米进行加工方的方法组装而成的,它的质量小于10kg。纳米卫星的体积虽然只有一般比麻雀稍微大一点,但是却拥有非常强大的运算能力,在太空中数十颗甚至数百颗这样的纳米卫星连接在一起就可以织成“天网”,形成纳米卫星侦察系统,能够实现对全球各个地区的覆盖和侦察,在军事上是的应用是非常的重要的,能实现军队对高空无“死区”的侦查。纳米飞行侦察系统属于是一种比较微型化的飞行系统,它能够携带多种探测侦查设备,他们具有非常高的信息处理和导航和通信的能力。该系统的其主要功能是对敌方进行秘密的部署,关键时候可以到敌方信息资源库和相关武器系统的内部或附近地区进行监视敌方的情况,与此同时也可对敌方的各种雷达、通信设备等实施有效监视和干扰。它能够附着在敌方的建筑物或者机械设备上进行监听,有时也可以直接把敌方目标的位置坐标传送到我方发送到我方的炮兵发射基地进行发射导弹,这能够有效地引导精确制导武器进行有效地攻击。当然除了可以放在飞行的纳米飞行器上,还有其它理性的的纳米传感器和侦查设备。他们的体积一般都比较小不容易被发现,内部都装有非常敏锐的传感器。还有一些传感器广泛的分布在一些武器装备的表面,这种传感器叫做环境传感器,它能够察觉比较细微的外部环境的一些“刺激”,用来对武器系统进行调整。潜艇的蒙皮改用纳米材料以后能够灵敏地察觉水流、水压等一些极为细微的外部环境环境的变化,同时及时反馈给潜艇的中央控制系统,实现最低限度地降低噪声,通过对水波的变化的“察觉”能够判断来袭的敌方鱼雷,使潜艇及时有效的进行规避;这能用比较低辐射功率完成“敌我识别,能有效的避免免误伤自己。

(4)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。

(5)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。

现在我国已经建立十多条的纳米材料和技术的生产线。纳米复合材料、纤维的改性、纳米材料在能源和环保等方面的应用与开发已在我国兴起。国内纳米技术注册的公司已经近百个,一些知名的企业家对纳米技术的关注,已经为我国纳米技术产业注入了新的活力。相信在不久将来,纳米材料技术将会应用很快的应用于我国的船舶行业。

4结语

目前世界上的的纳米物质和产品的种类非常的多,制作方法上也是五花八门,但总体上看还很不完整.从纳米材料的发展角度看,需要开发一些比较简单的,能够大规模进行生产的方法.从对纳米颗粒的基础来看,需要开发能够进行严格控制其微粒尺寸的制备方法.这些工作的进展将有助于以后更好的开发纳米材料的用途,从而创立新的电子学材料、光学材料、传感器等。

参考文献:

[1]曹茂盛.纳米材料导论[M]纳米材料应用,2014(6)

高分子材料的制备方法范文

[关键词]纳米材料;制备方法;液相法;气相法

[DOI]1013939/jcnkizgsc201615049

很多人都曾预言在21世纪纳米技术将成为一项最有前途的技术,主要原因在于它具有网络技术和基因技术所不可比拟的优势。正因如此,世界各个国家加大了对纳米技术的研究,投入了大量的人力物力,并相继启动了纳米计划,进一步推动了纳米制备方法的创新。在这种大环境下,我国相关研究者也应当顺时而变,不断提高纳米材料制备水平,创造出多种多样的制备方法。

1纳米材料的性质

纳米材料具有大量界面以及高度的弥散性,它能够为原子提供转成扩散途径。除此之外,纳米材料所表现的力、热等性质,与传统经济材料相比,还具有其自身独特的特性,因此被应用到各个领域。

11力学性质

结构材料开发一直以来都以高韧、高硬、高强为主题。材料制作如果融进了纳米材料的话,其强度就会与粒径成反比。纳米材料的位错密度相对较低,不仅如此,其临界位错圈的直径要远远高于纳米晶粒粒径,通常情况下,增值后位错塞积的平均间距与晶粒相比,略微大一些,这种现象使得纳米材料不会发生位错滑移和增值等相关现象,这就是我们众所周知的纳米晶强化效应。[1]作为一种刀具,金属陶瓷已经有很多年的历史了,然而,其力学强度却一直没有突破,主要原因在于一是金属陶瓷的混合烧结,二是晶粒粗大。如果将纳米技术制成超细或纳米晶粒材料的时候,金属陶瓷的硬度等基本性质就有了大幅度提高,从而在加工材料刀具领域占据了非常重要的位置。现阶段,使用纳米技术制作纤维和陶瓷等产品已经应用到各行各业的领域当中。

12磁学性质

近些年来,计算机硬盘系统的磁记录密度得到了极大地提高,现阶段已经超过了155Gb/cm2,也就是说,感应法读出磁头等已经难以满足社会的需求,然而,如果我们将纳米多层膜系统应用到计算机硬盘系统中,则可以有效提高巨磁电阻效应,其低噪声和灵敏度都能够满足需求。与此同时,我们还可以将其应用在新型的磁传感材料当中。高分子复合纳米材料能够很好地投射可见光,与传统的粗晶材料相比,对可见光的吸收系数要高出很多,然而,该种材料对红外波段的吸收系数则相对较少,正是这个原因,使其能够在光磁系统、光磁材料中被广泛应用。

13电学性质

众所周知,纳米材料的电阻在晶界面上原子体积分数增大情况下要远远高于同类粗晶材料,甚至还会产生绝缘体转变。通过充分利用纳米粒子效应我们可以制作成超高速、超容量、超微型低能耗的纳米电子器具,从长远角度来看,这种做法在不久的将来会有很大的成就,甚至还有可能超过现阶段半导体器件。[2]2001年,相关研究者用碳纳米管制成了纳米晶体管,这种纳米晶体管将晶体三极管的放大属性充分地体现出来。不仅如此,根据碳纳米管在低温下的三极管放大特性,研究者还将室温下的单电子晶体管研制出来。笔者相信,随着研究的不断深入,我们还能够研制出更多的符合社会需求的物品。

14热学性质

与一般非晶体和粗晶材料相比,纳米材料的比热和热膨胀系数值都非常高,界面原子排列相对比较混乱、原子的密度较低等综合作用变弱是导致这种现象的主要原因。正因如此,我们可以将其广泛应用在储热材料等领域,相信会有一个更为广阔的市场。

15光学性质

纳米粒子的粒径要远远低于光波波长。其与入射光之间的作用为交互作用,通过控制粒径和气孔率等途径,光透性可以得到更为精准的控制,这也是其为什么能够在光感应和光过滤中得到大范围应用的主要原因。[3]纳米半导体微粒的吸收光谱由于受量子尺寸效应的影响,通常都会存在一种蓝移现象,它的光吸收率非常大,因此,我们可以将其广泛应用在红外线感测器材料。

16生物医药材料应用

与红血细胞相比,纳米粒子相对较小,它能够在血液中运动自如,那么,如果我们将纳米粒子应用到机器人制作当中,并将其注入人体血管内,就可以实现全方位的检查人体,将人体脑血管中的血栓清除干净,甚至还可以将心脏动脉脂肪沉积物等消除,除此之外,还可以将这种机器人应用到吞噬病毒,杀死癌细胞。纳米材料也可以应用到医药领域,能够极大地促进药物运输。

2纳米材料的制备方法

21液相法

液相法其实就是指在一定的方法下将潜在溶液中的溶剂和溶质通过一定的方法进行分离,在这种情况下,溶剂中的溶质就能够逐步形成一种颗粒,不仅如此,这些颗粒的大小甚至这些颗粒的形状都是一定的,在此基础上,我们可以热解处理这些前躯体,经过上述步骤,就可以制备一定的纳米微粒。液相法的有点数不胜数,包括制备的设备相对简单,制备材料容易获得等。现阶段,液相法的发展情况相对较为广泛,得到了大家的普遍关注。具体来说,可以包括沉淀法和溶胶―凝胶法。这两种方法是液相法中比较常用的方法,方便、简单,是很多研究者进行纳米材料制备时候的首选方法。

22气相法

所谓气相法主要是与液相法相对来说的一种纳米制备方法,其应用范围要略微低于液相法。该种方法是指通过一定的手段,在一定条件下直接将物质转变为气体,然后再使气态物质在气体的条件下逐步发生物化反应,最后,我们就可以通过凝聚处理等方式,形成一定量的纳米微粒。[4]从该种纳米材料制备方法的制备过程和制备的条件来看,其具有其他制备方法无法比拟的优势,具体来说,主要包括以下几个方面:

一是制备的纳米微粒粒径存在较小的差异,且能够实现均匀分布;二是我们能够轻易地控制纳米微粒的力度;三是微粒的分散性要远远高于其他同类制备方法。如果将气相法和液相法放在一起进行比较,我们不难发现,气相法能够以自身独有的优势将那些液相法所不能够生产出来的纳米微粒生产出来,由此可见,该种制备方法的优势非常明显。[5]

化学气相法的应用范围非常广泛,其又被相关研究者称之为气相沉淀法,英文名称简称为CVD,它能够充分利用金属化合物的挥发属性,并通过化学反应等途径,使所需要的化合物在保护气体环境下迅速冷凝,这样才能够制作出各类物质的纳米微粒,在气相法中,该种方法是一种比较典型的应用,当然,其也是一种运用比较广泛的制备方法。[6]运用该种方法所制备的纳米微粒颗粒比较均匀,且具有较高的纯度,分散性也相对较强。根据加热的方式方法不同,我们可以将该种方法进行分类,例如可以将其分为热化学气相沉积法、激光诱导沉积法等。

3结论

深入分析现阶段纳米材料的应用现状,我们可以发现其应用范围已经得到了较大幅度的扩展,其在各行各业中的作用得到了一定的发挥。在这种形势下,我们必须加大研究力度,制作出更多更好的制备方法,笔者通过长期的研究与实践认为,未来的制备方法的发展也将逐步趋向于在纳米微粒的结构、尺寸等方面上,可以说,将纳米材料不断应用到各行各业,能够满足各行业的多样化需求,从而将纳米材料的优势充分体现出来。当然,研制工作并不是一蹴而就的,它需要广大科研工作者齐心协力,众志成城才能够实现。

参考文献:

[1]吴子健,张虎寅,吕艳红热喷涂纳米涂层制备方法及材料的研究现状和展望[J].材料保护,2005(10):44-47,76

[2]唐一科,许静,韦立凡纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报:自然科学版,2005(1):5-10

[3]黄烨,张玲榕纳米材料制备方法的研究现状及其发展趋势[J].科技创新导报,2015(10):248

[4]叶永庆浅谈纳米材料应用前景及制备方法[J].建材世界,2009(3):62-64

高分子材料的制备方法范文

[关键词]无机合成硬化学软化学

中图分类号:TDl63文献标识码:A文章编号:1009-914X(2014)10-0329-01

合成化学的发展是推动化学学科及其相关学科发展的主要动力,其中无机合成的发展方向是进行特定结构和性质的无机材料定向设计和合成。随着科学技术的日益发展和科技条件的提高,人们提出了两种制备无机材料的方法,即硬化学方法和软化学方法。

硬化学方法一般指那些要在超高温或超低温、超真空、强射线辐射、失重等极端条件下进行的化学合成。在这些极端条件下,可以形成许多种在一般条件下无法得到的新化合物及新物相与物态。例如,在模拟宇宙空间的无重力、高真空的情况下,可能合成出没有位错的高纯度晶体;在超高压下,许多物质的内外层电子轨道的距离均会发生变化,从而使元素的稳定价态发生质的飞跃。随着现代科学技术的发展,凭借已有的和将有的能力集中力量进行极端条件下的无机化学合成研究,将会在新材料、新知识、新设备和新工艺等方面获得重大进展。

硬化学方法主要包括:失重合成、超高温高压合成、等离子体合成、自蔓延高温合成、固体火焰燃烧反应以及一些爆炸反应等。在硬化学法提供的诸多材料制备技术中,等离子体合成法是目前研究最多的一种。等离子体可分为冷等离子体和热等离子体。冷等离子体中气体温度低而电子温度高,主要用于那些反应吸热大、产物高温不稳定的化合物,如NH3-H3N、H2N-NH2的合成。在热等离子体中,由于达到了局部热力学平衡状态,而且温度很高,复杂分子一般无法存在,大都离解成原子和离子,因此特别适用于粉末冶金、金属精炼和特种高温材料的合成,也适用于大的吸热反应。例如等离子体合NO2,比传统方法利用天然气先合成NH3,再合成NO2的方法简单的多;美国LasAlamos国家实验室成功的合成了Si3N4、SiC、B4C等超纯超细无机粉末,主要依赖于一种等离子体系统,其可以合成超纯、超细材料的射频。随着科技的发展,越来越多的硬化学方法被开发出来,并应用到实际生产中,如离子束合成、溅射合成等。

硬化学合成方法的特点是高温、高真空、高压、高能和高制备成本,依赖于“硬环境”的硬化学方法所获得的材料必须是在热力学平衡态的,同时还需要有高精尖的设备和巨大的资金投入。

软化学是近年来在的新材料研究中形成的一种全新的制备思路,是指在较温和条件下实现的缓慢地化学反应过程。软化学是在较低温度的“软环境”中进行,可以得到多种具有“介稳”结构的材料体系,这样,便有可能实现不同类型组分(如有机物-无机物、生物体-无机物、金属-玻璃、陶瓷-金属)在同一材料体系中的结合,也有可能发现一些用硬化学反应难以获得的低焙、低嫡或低对称性的新材料,尤其是一些具有特殊结构或形态低维、杂化和复合材料体系,因此软化学方法更有应用潜力。

软化学方法可以说是一种新型材料设计与合成的概念,在这种思路下产生了一系列新型材料的制备技术,开辟出了具有环境友好、节能、经济、高效的工艺路线,与“绿色化学”的核心思想一脉相承。软化学对其化学反应机制、路径、过程的易于控制,为了达到裁剪其物理性质的目的,我们可根据通过控制软化学反应过程的条件,对产物的结构和组分进行设计。软化学合成正在将新材料制备的前沿技术从高温、高真空、高压、高能和高制备成本的硬化学方法中解放出来,进入一个更广阔的空间。软化学提供的方法考验的则是人的技能、智力、学识和改造力,因而可以说软化学是一个具有智力密集型特点的研究领域。

软化学合成法所需设备比较简单,反应步骤也可以较容易地控制,制备成本低廉。软化学方法主要包括:溶胶-凝胶过程、插入反应、离子交换过程、水热法、前驱体法、共沉淀法、溶体(助熔剂)法、初产物法、拓扑化学过程及一些电化学过程等。溶胶-凝胶法是目前软化学中最常见的合成方法,其与传统固体材料制备方法的区别在于:溶胶-凝胶反应过程中,由分子级均匀混合的无结构的前驱体,经一系列的结构化过程,形成具有高度微结构控制和几何形状控制的材料。溶胶-凝胶过程通常包含了如水解、聚合、干燥、致密化等多个物理化学步骤,从而实现反应溶液过渡到固体材料的阶段。目前,工业制备陶瓷、玻璃及相关复合材料的薄膜、块体和微粉等已经广泛采用溶胶-凝胶过程。田秀淑等分别以无机盐和有机醇盐为先导化合物,对溶胶-凝胶法制备Al2O3-SiO2-ZrO2复合膜的成膜工艺进行详细的研究。随着纳米复合材料的发展,软化学合成技术在功能材料的制备方面发挥重要作用,比如纳米催化剂、纳米磁性材料、纳米气敏材料、纳米光学材料等。

硬化学和软化学合成方法都是化合物和材料合成的热点研究领域,不同方法制出的材料,其性能并不完全一样,有时性能甚至相差很大,新的制备方法经常可以开拓材料的新性能。硬化学和软化学作为无机合成化学的两种思路,共同为材料合成提供技术支持。

参考文献

[1]冯守华,徐如人.无机合成与制备化学研究进展[J].化学进展,2010,12(4):445-457.

[2]周益明,忻新泉.我国固体无机化学的研究进展[J].化学通报,2010,(11):1-6.

[3]徐如人,庞文琴,霍启升.无机合成与制备化学[M].北京:高等教育出版社,2009.

高分子材料的制备方法范文篇4

关键词:磁性高分子聚合物;吸附;重金属

1磁性高分子聚合物l展现状

1.1磁性高分子聚合物的合成方法

复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型磁性高分子材料根据磁性填料的不同可以分为:铁氧体类、稀土类和磁性高分子聚合物晶磁粒类。根据不同方向上的磁性能的差异,又可以分为各向同性和各向异性磁性高分子材料。能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球、磁性聚合物薄膜等。复合型磁性高分子材料中的磁性无机物主要是铁氧体类磁粉和稀土类磁粉。稀土永磁材料是近年来备受关注的磁性材料,其粘结磁体的磁性可超过烧结铁氧体及其他金属合金,从第一代的SmCo系到第二代的NdFeB系,发展非常迅速。目前我国的NdFeB产量居世界前列,质量逐步提高,并且已有一些自己的专利技术。20世纪90年代以后,又出现了新型稀土磁性材料,如稀土金属间化合物,稀土永磁材料及磁性高分子聚合物及纳米晶复合交换耦合永磁材料等。

稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂包括天然橡胶和合成橡胶,主要用于柔性复合磁体的制造,但与塑料相比,一般成型加工困难。热固性粘结剂一般用环氧树脂、酚醛树脂。热塑性粘结剂主要为聚酞胺、聚丙烯、聚乙烯等,聚酞胺P(A)类最为常见,综合考虑机械加工性、耐热性、吸湿性,目前最常用的PA基体是Nylon6、Nylon66等。除了上述这些聚合物基体外,刘颖等还用结构型的磁性高分子-二茂金属高分子铁磁体(OPM)粉作粘结剂与快淬NdFeB磁粉复合制成磁性高分子粘结NdFeB磁性材料,其磁性能比环氧树脂粘结NdFeB的磁性能高。磁性高分子微球所采用的高分子材料主要是蛋白质、生物多糖、脂类等生物高分子和人工合成的兼有各式各样功能基团的合成高分子。将合成高分子作为微球壳层的研究报导较多,同时,考虑到生物高分子的优良特性,近年来对生物磁性高分子微球的研究也正成为新型生物材料领域的研究热点。可以用于制备磁性聚合物膜的聚合物基体较多,原则上能用于制备高分子膜的聚合物都可以,如纤维素、氟碳塑料、聚醋、聚酞胺等。作者曾用聚偏氟乙烯和醋酸纤维素作基体膜,在其中分散磁性氧化铁粒子用于气体分离。聚醋磁性薄膜多用来制成磁带。目前国内外研究较多的是以核径迹蚀刻膜为基板的磁性高分子聚合物磁性材料,它实际上是采用模板法,以聚碳酸酷核径迹蚀刻膜为基体,在其中电沉积磁性粒子,利用其规整膜孔来控制得到的有序磁性高分子聚合物磁性材料。

1.2磁性高分子聚合物的功能

复合型高分子磁性材料分为树脂基铁氧体类高分子共混磁性材料和树脂基稀土填充类高分子共混磁性材料两类,简称为铁氧体类高分子磁性材料和稀土类高分子磁性材料,目前以铁氧体类高分子磁性材料为主。以高分子化学和无机磁学为基础发展起来的磁性高分子材料,是高分子功能材料研究的热点。复合型磁性高分子材料,由于其具有高磁性、易加工和成本低等优点,使它广泛应用于微型电机、办公用品、家电用品和自动控制等领域,但如何提高磁性微粒在高分子基体材料中的分散度是提高其磁性能的关键。结构型磁性高分子材料,由于其具有轻质、低磁损、常温稳定、易加工及抗辐照等优点,且其介电常数、介电损耗、磁导率和磁损耗基本不随频率和温度变化,其适合制造轻、小、薄的高频、微波电子器件,广泛应用于军工、通讯、航天等高技术领域,改进合成方法以提高它的磁性能是以后研究的重点。磁性高分子微球作为一种新型的有机一单倍线无机复合功能材料,由于其兼具高分子的众多特性和磁响应性,它被用做酶、细胞、药物等的载体广泛地应用到了生物医学、细胞学和生物工程等领域。对于磁性高分子微球,如何制得高磁响应性、高比表面和单分散性好的微球,以及高分子结构的精细化和功能化是以后研究的热点。随着新技术的广泛应用,高分子磁性材料必将会有更广泛的应用和发展前景。

2传统重金属的处理

2.1传统处理方法

2.1.1化学法

臭氧接触池的臭氧投加采用布气帽投加方式,均设有尾气破坏装置,避免臭氧泄漏污染大气。纯水具有接近7的pH(既不是碱性的也不是酸性的)。海水的pH值范围为7.5至8.4(中等碱性)。如果水是酸性的(低于7),可以加入石灰、苏打灰或氢氧化钠以在水净化过程中提高pH。石灰加入增加了钙离子浓度,从而提高了水的硬度。对于高度酸性的水,强制通风脱气器可以通过从水中去除溶解的二氧化碳,这是提高pH的有效方式。使水成为碱性有助于凝结和絮凝过程有效地工作,并且还有助于最小化铅从管道和管道配件中的铅焊料中溶解的风险。足够的碱度还降低水对铁管的腐蚀性。在某些情况下,可将酸加入碱性水中以降低pH。碱性水(高于pH7.0)不一定意味着来自管道系统的铅或铜不会溶解到水中。水沉淀碳酸钙以保护金属表面并降低有毒金属溶解在水中的可能性。所有高级氧化工艺(AOP)的特征在于具有共同的化学特征,在驱动氧化过程中利用HO自由基的高反应性的能力,其适合于实现完全减弱和通过甚至更少反应性污染物的转化。处理的目的是去除水中不需要的成分,并使其安全饮用或适合于工业或医疗应用中的特定目的。广泛的技术可用于去除污染物,如固体、微生物和一些溶解的无机和有机材料或环境持久的药物污染物。方法的选择将取决于被处理的水的质量,处理过程的成本和处理水的预期质量标准。

2.1.2物理法

重金属处理系统可以包括砂或砂粒通道或室,调节进入的污水的速度以允许沙子、砂砾、石头和碎玻璃的沉降。这些颗粒被去除,因为它们可能损坏泵和其他设备。对于小型下水道系统,可能不需要砂粒室,但是在较大的工厂需要除去砂粒。砂粒室有3种类型:卧式砂粒室,充气砂粒室和涡流砂粒室,该过程称为沉降。流动均衡澄清剂和机械化二级处理在均匀流动条件下更有效。均衡池可用于临时存储日间或潮湿天气流量峰值。盆地提供在工厂维护期间临时保持进入的污水的地方,以及稀释和分配可能抑制生物二级处理的有毒或高强度废物的排放。对废水沉淀后的污泥进行离心脱水,形成泥饼委托专业的公司处理。水厂处理是从海水或者其他水源中中去除污染物的过程。它包括物理、化学和生物过程,以去除这些污染物并产生可以安全使用的水。水厂处理的副产品通常是称为污水污泥的半固体废物或浆料,其在适于处置或土地应用之前必须进行进一步处理。水厂处理也可以称为净水处理,其也可以应用于处理工业农业废水。

2.1.3生物法

与单功能离子交换树脂不同,生物重金属处理法含有多种功能性位点,包括羧基,咪唑,巯基,氨基,磷酸酯,硫酸酯,硫醚,苯酚,羰基,酰胺和羟基部分。生物重金属处理法是更便宜,更有效的替代方法,用于从水溶液中除去金属元素,特别是重金属。广泛应用于重金属去除的生物重金属处理法,主要集中在细胞结构,生物吸附性能,预处理,修饰,再生/再利用,生物吸附建模(等温和动力学模型),新型生物重金属处理法的开发,旨在提高吸附能力的生物重金属处理法的预处理和改性。分子生物技术是解释分子水平机制的有力工具,并构建具有较高生物吸附能力和目标金属离子选择性的工程生物。尽管生物吸附应用面临着巨大的挑战,但金属去除的生物吸附过程的发展有两个趋势。一种趋势是使用混合技术去除污染物,特别是使用活细胞。另一个趋势是使用固定技术开发商业生物重金属处理法,并改善生物吸附过程,包括再生/再利用,使生物重金属处理法可以进行大力市场开发。

2.2存在的不足

重金属的常规处理有着众多的不足,物理法通过吸附进行处理,大部分时候采用活性炭,但是近年来,活性炭有被滥用的嫌疑,因其表面积并没有所宣传的那样效果,同时活性炭价格较高,因此在重金属处理中并不十分合算。化学法采用大量化学物质进行沉淀与pH调整,但是这样会使得水质受到破坏,这样得到的水源可能无法有着更加合适的用途。

2.3改进方向

使用磁性高分子聚合物净化池具有以下优点:增加净化池的可用功率,减少净化所需的时间。这些是通过用磁性高分子聚合物颗粒涂覆电极的表面来实现的,这样增加了电极的表面积,从而允许更多的电流在电极和净化池内部的化学物质之间流动。当净化池不使用时,磁性高分子聚合物材料可用作⒌缂与净化池中液体分开的涂层。在当前的净化池技术中,液体和固体相互作用,导致低电平放电,这降低了净化池的使用寿命。磁性高分子聚合物技术在净化池中的应用也存在着一些问题,磁性高分子聚合物颗粒具有低密度和高表面积。表面积越大,空气表面越容易发生氧化反应,这可能使净化池中的材料不稳定。由于磁性高分子聚合物颗粒的低密度,存在较高的颗粒间电阻,降低了材料的导电性。磁性高分子聚合物材料难以制造,增加成本。虽然磁性高分子聚合物材料可能大大提高净化池的能力,但它们可能成本高昂。

3磁性高分子聚合物在重金属处理中的应用

3.1作用机理

主要依靠顺磁性进行重金属吸附,顺磁是一种磁性的形式,其中某些材料被外部施加的磁场吸引,并且在所施加的磁场的方向上形成内部感应的磁场。与此相反,抗磁材料被磁场排斥,并在与所施加的磁场相反的方向上形成感应磁场。顺磁材料包括大多数化学元素和一些化合物,它们具有大于或等于1的相对导磁率(即非负磁化率),因此被吸引到磁场。施加场诱发的磁矩在场强中呈线性,相当弱。通常需要敏感的分析天平来检测效应,并且常规用SQUID磁强计进行顺磁材料的现代测量。顺磁材料对磁场具有较小的敏感性。这些材料被磁场略微吸引,并且当外部场被去除时材料不保持磁性。顺磁特性是由于存在一些不成对的电子,以及由外部磁场引起的电子路径的重新排列。顺磁材料包括镁,钼,锂和钽。与铁磁体不同,在没有外部施加的磁场的情况下,辅助磁铁不会保留任何磁化,因为热运动使自旋取向随机化。一些顺磁性材料即使在绝对零度下仍保持旋转紊乱,这意味着它们在基态下是顺磁性的,即在没有热运动的情况下。因此,当施加的场被去除时,总磁化强度降至零。即使在场的存在下,只有很小的感应磁化,因为只有一小部分的自旋将被场取向。这个分数与场强成正比,这解释了线性相关性。铁磁材料的吸引力是非线性的,而且更加强烈。通过细乳液聚合制备的磁性聚合物磁性高分子聚合物球的表面改性和定量表征的新颖有效的方案。由聚合物涂覆的氧化铁磁性高分子聚合物颗粒组成的复合磁性高分子聚合物球通过甲基丙烯酸甲酯和二乙烯基苯在磁性流体存在下的细乳液聚合制备。使用磁性聚合物与聚(乙二醇)(PEG)的表面改性反应获得亲水羟基官能化的磁性磁性高分子聚合物球。然后将亲和染料CibacronblueF3G-A(CB)共价偶联以制备磁性无孔亲和吸附剂。通过透射电子显微镜和振动样品磁强计检查所获得的聚合物磁性高分子聚合物球的形态和磁性。基于IC-O-C/IC=O的强度比和PEG的含量之间的线性关系,通过使用扩散反射傅立叶变换红外光谱定量测量表面改性的含量。X射线光电子能谱(XPS)用于检测磁性磁性高分子聚合物球的表面同时比较与CB配体偶联的染料涂覆的和未涂覆的磁性磁性高分子聚合物球的XPS光谱,发现效果较好。

3.2效果分析

以水厂净化为例,通过水厂的净水、输水管、取水泵三部分入手。对于净水厂的产能评估,应该着重于预臭氧的接触区域的进水量评估。因其采用石灰投入来改变酸碱性,因此对于水池中的水量进行预估是极为重要的,通过石灰投放量投入的调研可以正确预估净水部分的产能。在输水管道的输送过程中,可以对其流量进行监测与分析,通过进出水的流量与出水的沉淀物数值、pH值、微生物量来确定净水能力的实际水平。在取水泵的环节,通过对原水浑浊度、pH值与电导率的测定,对其洁水能力作出预估与在线的检测。在深度处理环节,对高压放电方式进行调研,对臭氧接触池的运行速率进行分析。在中央监控系统,可以直观地看到目前正在进行的各个环节的处理过程,进出水量、水的各种理化数值,系统还可以对其进行预估,预测未来可能出现的水量变化并加以提前控制。在中控室可以更好地计算水厂的实际产能,并且与各个环节进行比较,推断数据的真实性与有效性,对水厂的净水产能进行精确的复核。完善的中央监控系统:可以对现场设备、供配电系统、视频监控、管网压力等方面进行全面监控,可以及时发现管网参数的异动,借助自动化的控制来进行反馈与解决,从而最小化故障的波及范围,保证水质的要求。采取稳定高效的通信管理,使得工作人员可以在较短的时间内发现故障并且上报与解决。集成化的中央自动控制管理也是现代工厂的重要方向。

4发展前景

通过采用磁性高分子聚合物,工作人员可以加强净水环节中的重金属处理能力,可以利用高新的技术进行产能的提升与设备的改进。净水效率的提升是一条光明而曲折的路,在这条路上会出现很多难题与挑战,这个任务长期而又艰巨,需要结合实际生产经验,不断地进行总结归纳。为实现自身的长远发展而进行大胆革新,利用创新思维进行现代化建设,从而大踏步地走向科学高效的重金属处理目标。

参考文献

[1]施冬梅,邓辉,杜仕国,等.雷达隐身材料技术的发展[J].兵器材料科学与工程,2002(01).

[2]陶长元,吴玲,杜军,等.磁性高分子材料的研究及应用进展[J].材料导报,2003(04).

[3]丁明,孙虹.Fe_3O_4/壳聚糖核壳磁性微球的制备及特性[J].磁性材料及器件,2001(06).

[4]杨鹏飞,孟凡君,鲁成学,等.磁性聚合物研究与应用现状[J].磁性材料及器件,2004(04).

[5]秦润华,刘宏英,姜炜.磁性高分子微球在生物、医药领域的应用[J].中国粉体技术,2004(04).

[6]谢钢,张秋禹,罗正平,等.单分散磁性P(St/BA/MAA)微球的制备[J].高分子学报,2002(03).

高分子材料的制备方法范文篇5

关键词:聚苯胺复合材料合成方法

TheSynthesisOfPolyanilineCompositeMaterials

LiushengCaoming

(CollegeofChemicalEngineeringandEnergy;ZhengzhouUniversity,ZhengzhouHenanChina450001)

Abstract:Inrecentyears,polyanilinehasattractedmuchattentionbecauseofitsexcellentproperties.Thestudyonitssynthesisanddopedmechanismisalwaysoneofthemajorresearchcontentsofpolyanline.Inthispaper,thesynthesismethodsofpolyanlinecompositematerialsarereviewed

Keywords:polyanlineCompositematerialsSynthesismethods

一、引言

半导体金属氧化物传感器是目前主要的商业化的气体传感器,但在应用中存在选择性差、操作温度高、稳定性也不令人满意等问题。而以聚苯胺(PANI)为代表的导电高分子气敏材料由于价廉易得、合成和制膜工艺简单且可在常温下工作等优点,已成为研究的热点。但是纯的聚苯胺气敏材料存在选择性性差、灵敏度低以及稳定性欠佳等缺点,并且聚苯胺为共轭的刚性链结构,在有机溶剂中溶解度低、成膜性能差,不易加工成型从而阻碍了它作为气敏材料在实际中的应用。所以,为了克服纯聚苯胺的缺点,通过选择合适的通用高分子材料与聚苯胺复合,提高其灵敏度和选择性;改善材料的加工成膜性能;同时使之具有很好的稳定性,从而能够更广泛地应用于气体传感器中。

二、聚苯胺复合材料的合成

复合材料的合成方法大致可分为:共聚法、共混法、“现场”吸附聚合法以及电化学合成法四种。

1.共聚法

该法是合成包含导电共轭链段的接枝或嵌段共聚物,也是获得可溶性导电高分子的一种方法。这种共聚物在溶液中因界面活性能够形成胶束,导电链段(硬段)处于核心,其含量多少决定共聚物在溶液中的凝聚性。用共聚改性的方法虽然可以在一定程度上改善聚苯胺的力学性能和加工性能,但同时使聚合物的导电性能下降,改善的效果并不明显,报道的研究成果也较少。

2.共混法

共混法又可以溶液共混法、机械共混法和乳液共混法三种。

2.1溶液共混法

溶液共混法有两种实施方法:(1)通过选用恰当的功能质子酸,使掺杂PANI与聚合物共溶于特定的有机溶剂中,通过溶液共混方法制备聚苯胺导电材料,其关键是掺杂剂和溶剂的选择。(2)将本征态聚苯胺和聚合物分别溶于有机溶剂中,按一定比例混合浇铸,得到本征态聚苯胺/聚合物薄膜,再将此薄膜浸于酸溶液中掺杂,从而得到导电复合膜。

在第一种方案中导电性能的掺杂剂功能质子酸中的功能基团、基体聚合物、溶剂、加工方法和所得共混材料的相结构的影响。第二种实施方法在酸溶液掺杂过程中,掺杂介质对掺杂效率有明显的影响。

溶液共混法分散均匀、使用方便、能够制得电导率较透明材料。但是导电聚苯胺在常用有机溶剂中溶解度小,需要耗费大量有机溶剂,容易造成环境污染。

2.2机械熔融共混法

机械共混法是制备聚合物共混材料的常用方法。将导电聚苯胺与基体聚合物同时放入混炼设备中,在熔融温度下进行混炼,即可得到聚苯胺/聚合物导电共混材料。

机械熔融加工法既可以把导电聚合物粒子分散于热塑性材料中,充分利用热塑性聚合物的加工特性,也可以用涂覆有导电聚合物的热塑性材料颗粒热压加工。基体聚合物、掺杂剂、温度和加工方法的选择,都会影响所得导电材料的性能。

2.3乳液共混法

乳液共混法有两种实施方法:一种是原位乳液聚合法,即用溶剂将聚合物树脂溶解后,加入表面活性剂制成乳液,再进行苯胺的聚合;另一种是两步法,即先制备PANI胶乳,再与基体聚合物的溶液或乳液共混。

两步法中,PANI胶乳的稳定是技术的关键,只有在稳定的胶乳体系中,才可以获得性能均一的共混材料。目前多是采用PANI-DBSA胶乳体系,胶乳中PANI粒径是纳米级的,在适当的DBSA存在下,胶乳体系是稳定的,其分散程度和稳定程度,随DBSA含量的增加而增加。其中一些DBSA是掺杂剂,过量的DBSA则充当表面活性剂。来保持体系稳定。甚至当PANI乳液与聚合物的溶液或乳液混合后,无须添加任何添加剂,所得分散体系也是稳定的。

乳液聚合对聚苯胺溶解性的改善得益于聚合过程中使用的乳化剂,乳化剂往往是大分子功能质子酸,不仅具有乳化作用,而且对生成的聚苯胺分子能进行有效的掺杂,起到模板或立体稳定剂的作用。

3.“现场”吸附聚合法

该方法是将苯胺单体吸附在非导电聚合物基材上,通过引发聚合苯胺单体在基材表面形成导电薄膜,从而获得功能性聚苯胺复合材料。例如,将纤维、纺织品、塑料等基材浸在新配制的过硫酸铵与苯胺的酸性水溶液混合物中,使苯胺在基材的表面发生氧化聚合反应,聚苯胺可均匀地“沉积”在基材表面,形成良好的致密膜,以制成导电材料。

复合材料的力学性能以及热力学性能主要由基材性能决定,这就为根据实际需要合成出具有不同热、力学性能的聚苯胺复合材料提供了可能。

4.电化学合成法

电化学方法通常用来制备膜制品。其方式有两种:一种是二段法,即在电解质溶液中,在预先覆有绝缘高分子膜的电极上电解聚苯胺单体。第二种是一段法,即将聚苯胺单体、支撑高分子一起溶于电解液中,一次电解得到所需复合膜。用电化学制备复合膜,不仅可以避免使用强烈的氧化剂和有害的掺杂剂,而且可以控制其膜结构。

三、结束语

近年来随着气体传感器的广泛应用和气敏元件性能的需求,聚苯胺已成为一种新兴的导电高分子材料而受到广大科研工作者的青睐。虽然聚苯胺的基础研究和掺杂机理的研究已经取得一定的成果,但是仍有很多问题亟待解决:聚苯胺的复合机制、导电机制以及进一步提高聚苯胺的性能。所以对聚苯胺这个新兴的导电高分子材料,仍需科研工作者投入大量精力去研究!

参考文献:

[1]EsterSegal,RozaTchoudakov,MosheNarkis,ArnonSiegmanm,YenWei.Polystyrene/polyanilinenanoblendsforsensingofaliphaticalcohols[J].SensorsandActuatorsB,2005(104):140-150.

[2]谢丹,蒋亚东,李丹等.聚苯胺基LB膜的制备及气敏特性的研究[J].高分子学报,200(2):224-227.

[3]邓建国,王建华,龙新平等.聚苯胺复合材研究进展[J].高分子通报,2002(3):33-37.

[4]时会文,曾幸荣,杨卫.可加工导电高分子材料的研究进展[J].合成树脂及塑料,1995,12(4):46-50.

[5]宣兆龙,张倩.导电聚苯胺的改性技术研究现状[J].材料科学与工程学报,2004,22(1):150-153.

[6]马永梅,谭晓明,谢洪泉.聚苯胺导电复合材料制备的若干进展[J].材料导报,1998,12(4):65-68.

[7]闾兴圣,王庚超.聚苯胺/聚合物导电材料研究进展[J].功能高分子学报,2003,16(1):107-112.

高分子材料的制备方法范文篇6

关键词:二氧化锆电解质固体氧化物燃料电池专利技术分析

中图分类号:TB33文献标识码:A文章编号:1007-3973(2013)008-141-04

1引言

固体氧化物燃料电池(SOFC)是以致密氧化物陶瓷为电解质膜,在高温下将燃料的化学能转变成电能的高效能量转换装置,电解质是SOFC最核心的部件,氧化锆(ZrO2)基电解质是SOFC中应用最为广泛,研究最多的电解质材料。由于专利文献是集技术信息、法律信息和经济信息于一身,具有新颖、易得、可靠、时间序列长等优势,因此,从专利分析的角度可以更清晰的梳理氧化锆(ZrO2)基体复合物作为SOFC的电解质的技术发展脉络和主题分布,揭示技术发展趋势。

2专利申请量及申请人分布

截至2013年4月,在中国公开的涉及到使用ZrO2基体复合物作为SOFC的电解质的专利申请共计360件,其中116件旨在对电解质材料或者制备方法以及结构等方面进行改进,这说明在对SOFC的研究中,电解质材料是非常重要的一个领域。

在对ZrO2基体复合物电解质进行改进的中国专利中,申请人分布见图1,从图1可知,在包括国内申请人和国外来华申请人的所有申请人中,高校及科研院所占有很大的比例,而公司及个人所占的比例较小,这种情况在国内申请人中表现得尤为明显,企业与个人申请只占国内申请人的10.3%,这主要是由于在我国SOFC的商业化程度不够,前期研发投入大,对于以盈利为目的的企业和个人而言,对ZrO2基体电解质的研发热情不高,因此,ZrO2基电解质的研究和发展更多的需要国家的投入或者政策的支持与引导。

3技术主题分布

制约SOFC商用的很重要的原因在于其需要运行在较高的工作温度,这带来了一系列的问题,如材料间热膨胀系数的匹配,电解质与电极间的界面扩散,材料的氧化速率等,较高的工作温度必然会提高SOFC的使用成本并带来稳定性的问题,而当温度降低时,电解质的阻抗以及电极和电解质之间的界面阻抗增加是导致SOFC必须在高温运行的主要原因,因此,降低电解质的使用温度是该领域的普遍追求。对用于固体氧化物燃料电池的ZrO2基电解质材料技术分布的分析见图2,其中薄膜化是指对电解质薄膜的制造方法或者与电极复合集成的制造方法进行改进,改性是指采用掺杂的方式对电解质改性,ZrO2制备是指为了提高其在烧结过程中的性能而对其制备方法进行改进,其它部分主要涉及薄膜结构等方面的改进。

从图2可知,在对ZrO2基电解质材料的改进中使电解质材料薄膜化和掺杂改性占了主要地位,薄膜化的主要目的是为了降低电解质膜的内阻,从而降低SOFC的工作温度,掺杂改性的主要目的是为了稳定ZrO2电解质,避免其相变导致体积变化而使电解质膜开裂,掺杂改性的另一目的也是为了降低电解质的使用温度,其中,薄膜化占据了主导地位,这可能是由于薄膜化的方式一方面可以使用成熟的性能稳定的电解质材料,另一方面不用再研究与新的电解质材料相匹配的电极材料。

3.1ZrO2基电解质材料的薄膜化

对于采用薄膜化的方法使电解质的阻抗降低的研究主要集中在集成化制备方法,即将电极与电解质复合制备,和电解质薄膜制备工艺的改进上,其中集成化制备占据了主导地位,约占整个薄膜化方法的66.7%,集成化制备的具体技术分布见图3。由图3可知,在集成化制备中,电解质与阳极复合占据了主导地位,这主要是由于电解质与阳极复合对于降低离子传导阻力,减少阴极极化多有益处,并且成本相对较低。

电解质薄膜制备工艺的改进中主要涉及以下几种方法:

(1)干压法:指用粉末压片机将混合均匀的粉料压制成型,西北有色金属研究院申请的专利中公开了采用单向干压法制备氧化锰稳定的四方氧化锆固体电解质的方法,这种方法成本低,合成工艺技术条件及操作方法简单,原料利用率高,但是不适合电解质层的商业化放大设备,一般只用于实验室的研究。

(2)涂布法,又称涂覆法,是将少量的陶瓷粉末均匀分散于水或者有机溶剂中形成稳定的悬浊液,使其均匀分布于基体表面,再通过干燥、烧结形成薄膜,这种方法制备的薄膜厚度较薄,但是需要重复多次铺展、干燥、烧结的过程,耗时长,效率低,哈尔滨工业大学申请的专利中公开了浆料旋涂的制备方法,将电极支撑体置于匀胶机上,并在其中间放置一滴电解质浆料,以1~10krpm的转速,保持10秒~5分钟,得到一层电解质薄膜,在50~600℃干燥,并保持1~60分钟,需要重复2~5次,哈尔滨工业大学申请的专利中公开了薄膜滤涂的制备方法,采用平底的布氏漏斗,漏斗内部放置滤纸,把阳极支撑体平放入布氏漏斗内,将悬浮液用玻璃棒引流加入到布氏漏斗中,随着滤液全部下沉,在阳极支撑体表面上形成了一层光滑的电解质膜坯,烧结得到电解质薄膜,克服了制膜过程繁琐,成膜工艺步骤多的缺陷。

(3)流延法,又称刮刀法,是将陶瓷粉末分散在有机溶剂中配置成浆料,采用流延设备将浆料涂刮在基底表面,再经干燥、烧结成膜。该方法的关键在于制备性能合适的流延浆料,景德镇陶瓷学院申请的专利中公开了采用引发剂在YSZ颗粒表面进行原位聚合形成高固相含量的水系流延浆料制备方法,可形成稳定、分散均匀的高固相含量的流水系延浆料,以制备大面积电解质素坯膜片。该方法成膜均匀,性能稳定,但是制备过程中采用的有机物多易燃有毒,并且在干燥过程中易开裂。

(4)电泳沉积法:指将陶瓷粉末悬浮于有机介质中,利用外加电场使荷电固体颗粒向电极迁移并沉积的制膜方法,阿尔伯达研究顾问有限公司申请的专利中公开了通过电泳沉积在电极表面上附着YSZ电解质的方法,该方法设备简单,成膜效率高,素胚膜中含有很少或不含有机物,缺点是电泳体系对一些条件敏感,薄膜生长过程中可能有H2逸出,在薄膜中形成孔道,需要重复沉积。

(5)丝网印刷法:指将电解质粉末与有机粘结剂混合配置的印刷浆料通过丝网均匀涂覆在电极支撑体表面,经干燥、烧结后制得。该方法的优点是成膜率高,重复性好,但是浆料稳定性差。哈尔滨工业大学申请的专利中公开了丝网印刷制备方法,克服了丝网印刷法成膜致密性较低的缺陷。

(6)溶胶凝胶法是指借助于胶体分散体系制得湿膜,再采取初步干燥和高温热处理以除去凝胶膜内残余的有机溶剂与有机基团,从而使薄膜致密化的方法。该方法的优点是薄膜组分均匀可控,制膜成本低,操作简单,缺点是热处理时间较长,导致薄膜收缩率大,气孔率高。大连理工大学申请的专利中公开了快速热处理溶胶凝胶制备方法,通过制备溶胶前驱体、旋转涂覆镀膜、快速热处理、薄膜形成,循环操作的制备方法,解决了传统溶胶凝胶制膜方法中长时间高温热处理所导致的薄膜质量与电学性能较差的问题。

(7)磁控溅射法:通过磁场对带电粒子的约束以溅射的方式成膜的方法。大连理工大学申请的专利中公开了采用脉冲磁控溅射制备电解质薄膜的方法,克服了普通磁控溅射方法中的微弧放电问题。磁控溅射法的优点是薄膜附着力大,工艺参数容易控制,通过更换靶材即可得到不同种类的薄膜,但是生产成本过高。

3.2ZrO2基电解质材料的掺杂改性

ZrO2主要以三种同质异形体存在,即单斜晶系(m-ZrO2)、四方晶系(t-ZrO2)和立方晶系(c-ZrO2),纯的ZrO2在烧结冷却过程中发生四方相到单斜相的马氏体相变时伴随有3%~5%的体积变化,从而导致材料容易开裂,通常采用掺杂的方式避免这种情况,ZrO2基电解质材料的掺杂改性主要涉及以下几种掺杂元素:

(1)稀土金属掺杂。在采用稀土金属氧化物对ZrO2电解质材料掺杂改性的技术中,使用Y2O3、Sc2O3作为掺杂物较为为广泛的,因此,关于使用Y2O3、Sc2O3进行掺杂的主要涉及对其制备方法的改进,司银奎个人申请专利中公开了水热合成法制备YSZ,该方法不需要二次高温热处理,中国科学院新疆理化技术研究所申请的专利中公开了微波水热合成法,进一步降低了反应温度,华东理工大学申请的专利中公开了超声-微波合成法,使用超声防止前驱体的团聚,中国科学院过程工程研究所申请的专利中对溶胶凝胶法进行优化,使电解质的烧结活性提高,浙江大学申请的专利中公开了喷雾热解法,采用胶体溶液代替水溶液作为喷雾前驱液,可以制得超细粉体,中国科学院大连化学物理研究所申请的专利中公开了溶胶凝胶-爆炸燃烧法,采用将胶体加热至发生类似爆炸的剧烈燃烧反应的方法,生成超细的复合氧化物前驱粉。圣戈本陶瓷及塑料股份有限公司申请的专利中公开了对YSZ的烧结性能进行改进的掺杂,在YSZ中掺杂0.25mol%至5mol%的-Al2O3和Mn2O3,降低YSZ电解质的烧结温度并且改变其烧结行为。江西泛美亚材料有限公司申请的专利中对氧化钪稳定的氧化锆进行了掺杂改性,引入了氧化铝、氧化铈、氧化铋之中的一种或多种第三组元,使其能够兼顾高电导率高强度指标的特点,并提供了“常压水解―低压水热”组合新工艺,避免了水热法高温高压的苛刻生产条件。北京方正稀土科技研究所有限公司申请的专利中公开了用氧化稀土稳定氧化锆,其中稀土元素为钪、钇、镧、钕、钐、铕、钆、镝、钬、铒、铥、镱或镥,并且在稀土掺杂的基础上进一步掺杂Al2O3或TiO2,上海大学申请的专利中公开了在醇-水溶液中用溶胶凝胶法制备ZrO2-HfO2-Y2O3-Sc2O3纳米粉体的技术,其中,ZrO2-HfO2作为电解质,Y2O3-Sc2O3作为稳定剂,博隆能源股份有限公司申请的专利中公开了使用氧化钇及氧化镱中的至少一者与氧化钪和氧化铈对氧化锆进行掺杂,使得该电解质在850℃温度下4000小时之后,离子导电率的降级不大于15%。

(2)碱土金属掺杂。东北大学申请的专利中公开了使用氧化镁部分稳定单斜氧化锆,并公开在常压低温下制备该电解质的方法,合成粉末中单斜相的含量可通过调整煅烧条件、改变稳定剂和添加剂含量来精确控制。普莱克斯技术有限公司申请的专利中公开了在掺杂氧化锆表面涂覆碱土金属盐溶液,再通过加热使盐分解,降低了有害的硅杂质从而提高电解质的氧离子电导率。

(3)过渡金属掺杂。西北有色金属研究院申请的专利中公开了用氧化锰稳定氧化锆,北京方正稀土科技研究所有限公司申请的专利中在稀土掺杂的基础上,进一步引入Al2O3或TiO2进行掺杂。

3.3ZrO2的制备方法

防止产品团聚,提高烧结活性是促使对ZrO2的制备方法进行改进的主要原因。吉林大学申请的专利中公开了液相原位生成法,具有反应过程无污染,反应温度低的优点,中国矿业大学(北京)申请的专利中对共沉淀生成法进行了改进,克服了沉淀不均匀,容易团聚的缺陷,南京工业大学申请的专利中对传统的溶胶凝胶法进行改进,克服了溶胶凝胶体系毒性大的缺点,中国科学院兰州化学物理研究所申请的专利中采用介孔氧化锆包覆无孔硅球的壳核结构提高了产品的分散性。

4结语

在中国公开的涉及到使用ZrO2基体复合物作为SOFC的电解质的专利申请中,有近1/3针对电解质材料本身或者其制备方法以及结构等方面进行改进,说明对电解质材料的改进是研究的热点,然而在国内申请人中高校及科研院所占到89.7%,这说明ZrO2基电解质的发展仍然需要国家政策的引导。

在ZrO2基电解质的研发中,通过电解质的薄膜化降低其内阻是主要的研究方向,尤其是与阳极的集成化制备。这主要是由于一方面可以使用成熟的性能稳定的电解质材料,另一方面不用再研究与新的电解质材料相匹配的电极材料。

注释:

①作者艾娟对本文所作贡献与第一作者相同,因篇幅所限,将其列为第二作者.

②徐国祥对本文亦有贡献,因篇幅所限,名字未出现在作者栏中.

参考文献:

[1]韩达,吴天植,辛显双,等.低温固体氧化物燃料电池电解质材料[J].中国工程科学,2013,15(2):66-71.

[2]王玲,曾燕伟,蔡铜祥.固体氧化物燃料电池电解质材料的研究进展[J].电池,2012,42(3):172-175.

[3]曹琴仙,于淼.基于内容分析法的专利文献应用研究[J].现代情报,2007(12):147-150.

[4]徐旭东,田长安,尹奇异,等.固体氧化物燃料电池电解质材料的发展趋势[J].硅酸盐通报,2011,30(3):593-596.

[5]魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J].稀有金属,2003,27(2):286-292.

[6]一种氧化锰稳定的四方氧化锆陶瓷材料及其制备方法CN101357845A中国专利[P].

[7]一种薄膜的浆料旋涂制备方法CN1748876A中国专利[P].

[8]固体氧化物电解质薄膜的滤涂制备方法CN1758470A中国专利[P].

[9]一种采用引发剂在YSZ颗粒表面进行原位聚合形成高固相含量的水系流延浆料制备方法CN102173821A中国专利[P].

[10]由金属或复合物电沉积所制备的中空无机膜CN1639391A中国专利[P].

[11]氧化钇稳定氧化锆电解质薄膜的丝网印刷制备方法CN1747211A中国专利[P].

[12]一类复合氧离子导体电解质薄膜的快速热处理溶胶凝胶制备方法CN1571203A中国专利[P].

[13]一类氧离子导体电解质薄膜的构造及其脉冲磁控溅射制备方法CN1564266A中国专利[P].

[14]固体氧化物燃料电池电解质材料纳米YSZ的水热合成方法CN102447125A中国专利[P].

[15]纳米氧化钇稳定氧化锆材料的微波水热合成方法CN1636932A中国专利[P].

[16]一种氧化钇稳定氧化锆粉体的制备方法CN101708829A中国专利[P].

[17]一种低温制备纳米晶氧化锆基固体电解质的方法CN1710742A中国专利[P].

[18]固体氧化物燃料电池粉体的制备方法和用途CN1792770A中国专利[P].

[19]一种制备中温固体氧化物燃料电池电解质超细粉的方法CN1471188A中国专利[P].

[20]用于固体氧化物燃料电池堆的共掺杂的YSZ电解质CN102301516A中国专利[P].

[21]一种氧化钪稳定氧化锆粉体及其制备方法CN101830505A中国专利[P].

[22]一种稀土掺杂二氧化锆固体电解质纳米晶薄膜的制备方法CN1323920A中国专利[P].

[23]氧化锆基复合纳米粉体的制备方法CN1861700A中国专利[P].

[24]低降级的相稳定性经掺杂氧化锆电解质组合物CN102725902A中国专利[P].

[25]一种常压低温制备氧化镁部分稳定单斜氧化锆粉末的方法CN101628733A中国专利[P].

[26]提高氧离子电导率的制造方法CN1732050A中国专利[P].

[27]一种氧化锰稳定的四方氧化锆陶瓷材料及其制备方法CN101357845A中国专利[P].

[28]一种稀土掺杂二氧化锆固体电解质纳米晶薄膜的制备方法CN1323920A中国专利[P].

[29]一种制备四方相(立方相)纳米二氧化锆的新方法CN101024514A中国专利[P].

[30]一种纳米粉体材料的制备方法CN101962168A中国专利[P].

高分子材料的制备方法范文篇7

1聚乙烯泡沫材料的发泡方法及特点

聚乙烯泡沫材料是采用聚乙烯作为最主要的原材料,通过与发泡剂、交联剂等助剂,在高温高压的环境下,经过交联发泡环节而产生的。经过交联处理后的聚乙烯发泡材料,它具有如下特性:机械强度高,抗蠕变性,耐应力开裂,耐热和耐低温。聚乙烯树脂系结晶型高聚物,呈线型结构,发泡较困难。为了改善聚乙烯发泡材料存在的不足,在发泡工艺方面应该提高聚乙烯中形成的熔融物的粘弹性,使之达到适宜的发泡专业提供论文写作、写作论文的服务,欢迎光临dylw.net条件,必须对它进行交联处理,以利于下一步的发泡工艺。

聚乙烯泡沫发泡分为交联和无交联两种,交联又分为化学交联和辐射交联。化学交联聚乙烯泡沫最早由美国于1941年研制成功,其生产方法是非连续的。辐射交联聚乙烯泡沫由日本于1965年首先实现工业化。在聚乙烯泡沫材料的制备中,影响聚乙烯泡沫材料质量的关键因素是气泡的生成和成长,良好的质量是形成细小均匀又相互独立的泡孔结果。其生产过程对于物理发泡剂、发泡助剂、抗缩剂、成核剂的选择和温度控制要求相对严格。主要的影响因素有:发泡剂的用量,物料在料筒内滞留时间,各种助剂的用量等。

2聚乙烯发泡材料的生产工艺

现有聚乙烯泡沫材料多采用溶液发泡或模压发泡法来制备,工艺复杂,周期长,成本高,限制了其应用。聚乙烯泡沫材料的交联工艺,通常有化学交联和辐射交联两种:

2.1化学交联法

聚乙烯树脂、交联剂、发泡剂和发泡助剂?陴计量、捏合、混炼?陴一次发泡?陴二次发泡。

2.2辐射交联法

聚乙烯树脂、发泡剂和发泡助剂?陴计量、捏合、混炼切粒挤片?陴辐照?陴发泡。

鉴于辐射交联必须配备电子加速器,设备投资较大,因此在目前的工业大生产中多数采用化学交联的办法。IXPE泡棉材料全称电子辐射交联聚乙烯发泡材料;普通的XPE一般采用水平炉发泡而IXPE可以采用水平炉发泡也可以通过水平炉预热垂直炉发泡,但是无论是XPE或者IXPE前道和后道工艺基本相同,现在最常见的生产方式主要如图1所示。

常用的造粒方式有四种方式,具体如图2(a)、(b)、(c)、(d)所示,本公司采用(d)图的线路。

3制备聚乙烯泡沫材料的辐射交联工艺

聚乙烯通过辐射交联制备的基本原理是:高能粒子将聚乙烯分子激发,使之形成激发的自由基,而这些自由基相互彼此结合,从而产生交联键,导致聚乙烯分子的三维立体网状结构的形成,如图3所示。

IXPE泡专业提供论文写作、写作论文的服务,欢迎光临dylw.net棉材料的全称是:电子辐射交联聚乙烯发泡材料,它以聚乙烯为主要材料,按照一定的比例配以几种辅料,先将它们混合,然后挤塑成型,依靠辐照加工技术,该技术具有绿色健康的特性,它利用电离子辐射作用于聚乙烯,形成的交联作用从而改变了聚乙烯原有的结构,形成网状的、独立的、闭孔的、泡孔结构,生产出闭孔泡沫材料。其产品特征为:产品发泡倍率分别为5,10,15,20,25,30,35倍,常规宽度为1m,1.04m,1.05m,1.1m,最宽做到2.4m,2.5m,单层厚度为0.2~8mm,其它厚度如50mm等需要复合。我公司采用辐射交联工艺流程如图4所示。

它的工艺过程是在双螺杆上造好5mm大小的颗粒等各种母料(发泡母料、敏化母料等)然后根据用户需要在PE中添加不同母料,挤出不同倍率、不同要求全配方粒料,再由挤出机挤出成片,通过辐照传送装置进行辐照,最后在水平预热垂直发泡炉上进行发泡。此工艺在生产实际中,影响产品质量的主要指标有4个,即:混合物的配方、挤片、辐射交联作用、发泡专用设备等。

①混合物配方的结果,直接影响着产品的性能,决定产品质量指标的好坏,同时也对产品加工的难易程度、成品率的高低、成本的大小,有着直接的影响。

②挤片质量的好坏,直接影响到泡孔的大小、物料的均匀性及成品的尺寸精度。

③聚乙烯辐射交联发泡材料的加工时,母片必须进行连续的、均匀的辐照加工。因此辐照加速器一些参数控制产品质量,如辐照能量、束流、扫描宽度、传送速度、照射方式等。为了使聚乙烯辐射交联发泡材料的生产运行满足工艺要求,辐照加速器的能量、束流、扫描宽度等参数的选择是重中之重。它可以通过纠偏、控制张力等措施,解决发泡材料的辐射生产工艺。

④加热发泡是辐射交联发泡材料生产中最特殊,也是最重要的环节。聚乙烯辐射交联发泡材料的制备中,发泡工艺需要控制的主要参数有3个,即:加热温度、预热时间、发泡时间。发泡时的加热温度要高于发泡剂的分解温度,确保发泡剂分解完整,确保产品质量。

辐射交联与化学交联发泡工艺相比较,它具有如下优点:①辐射交联发泡工艺由于不采用化学交联剂,因此它不会产生有害气体,减少空气污染。②辐射交联发泡工艺更容易控制反应进程,而且原材料如基础树脂或专业提供论文写作、写作论文的服务,欢迎光临dylw.net发泡剂选择更简单、方便。③化学交联工艺的交联剂通过加热,它会在较宽温度范围进行分解,导致产品的均匀性出现缺陷。而辐射交联工艺是不存在这一问题的,因为它在同一温度下实现产品交联。④辐射工艺可在任意温度的条件下,使产品实现预定的交联,然后再进行发泡,因此它的发泡速度比化学交联发泡速度快1倍。⑤能够生产多种型号的产品,交联度控制方便,可得到孔径大小各异,发泡率相差很大的泡沫材料。⑥生产规模扩大,辐射交联发泡工艺成本明显越低,而化学交联发泡工艺成本则不随生产规模而改变。

4结语

通过分析可知,采用电子辐射交联工艺生产聚乙烯发泡材料具有比化学法更环保,更经济。一是采用辐射交联技术可制备发泡倍率高达30倍的聚乙烯泡沫。二是利用辐射技术能够显著地缩短发泡时间,降低发泡温度,为此工艺的推广奠定了坚实的基础。

参考文献:

[1]梁宏斌,张玉宝,王强,等.辐射交联聚乙烯泡沫的研究[J].化学工程师,2004,(6).

[2]李学锋,彭少贤,王妮娜,等.改性低密度聚乙烯发泡材料的配方和生产技术[J].塑料科技,2001,(1).

高分子材料的制备方法范文篇8

制备洋葱碳是一个非常困难的工作,其制备方法非常少,仅有几种方法如电子束辐照法和直流电弧法。洋葱碳具有很强的催化性能,其可以作为氧化脱氢催化剂进行催化。据科学家们研究发现,在同等质量下,洋葱碳具有较高的数目活性中心,这也使其催化性能要好过其他催化剂。但是受到了制备方法控制难以及产物的纯度较低的缺点影响,想要对洋葱碳材料进行宏量制备是无法做到的。也正因为这样,洋葱碳材料无法被有效应用在多相催化领域。

所谓纳米金刚石,指的是均粒径为纳米量级的金刚石微粉,其具有纳米粒子和超硬材料两种特性,是一种新型碳纳米材料。纳米金刚石材料的生产是近些年刚刚兴起的。也正因为如此,对其的制备方法十分不完善,并没有被有效利用于催化剂领域。相关实验证得,如果将甲醇分解,并在空气下将其催化剂进行处理,就会使催化剂拥有非常强烈的反应活性。此外,当进行乙苯脱氢制苯乙烯的反应时可以发现,无论是纳米金刚石还是碳纳米管,它们的催化活性都是非常高的。由此可见,石墨的结构并不会对催化活性起着决定性作用。

二、一维碳纳米材料

简单地说,一维纳米材料指的是当空间上的两个维度在纳米范围的碳材料,碳纳米纤维和碳纳米管就是这种材料的最好代表。关于近几年来碳纳米纤维和碳纳米管在多相催化领域应用的最新进展如下所示。

1碳纳米纤维(CNF)s的制备及相关问题

在进行VGCFs生产时,一般采用苯、甲烷等小分子的有机化合物作为主要的碳源。而碳纳米纤维通常主要是通过小分子气相生长碳纤维(VGCFs)催化裂解制备的,且催化剂主要采用金属铁、钴、镍等以及它们的合金或化合物。这种材料的制备方法有有基板法和流动法两类。

2碳纳米管(CNT)s的发现及其在多相催化中的应用

碳纳米管是一种非常重要的材料,该材料的发现在科学界引起了轰动。科学家们充分利用了碳纳米管的表面积大的特点以及稳定性强等特点,有效地促进了钴金属的分散,进而成功使钴团簇的尺寸减小。

三、二维碳纳米材料

所谓的二维纳米碳材料指的是那些在空间范围内仅仅有一维处于纳米尺度范围内的碳纳米材料。

1二维石墨烯(graphene)及其在多相催化中的应用

石墨烯的组成结构十分独特,其是由碳原子六角形网格形成的单层二维片层。石墨材料的有很多的优点,比如其吸附性质很强,导电导热的性能好等。而石墨烯的这些优点也使其具备了成为有效催化剂的条件。石墨烯尺度范围在微米级,其等效于一种分子性能非常高的材料,也正因为如此,石墨烯也被人们看做是最为方便回收的类均相催化剂。

高分子材料的制备方法范文1篇9

纳米科学技术是20世纪80年展起来的一门多学科交叉融合的技术科学,其最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物学特性来制造具有特定功能的产品。纳米材料是指具有纳米量级的超微粒构成的固体物质。纳米材料具有三个结构特点:①结构单元或特征维度尺寸在纳米数量级(1~100nm);②存在大量的界面或自由表面;③各纳米单元之间存在一定的相互作用。由于纳米材料结构上的特殊性,使纳米材料具有一些独特的效应,主要表现为小尺寸效应和表面或界面效应,因而在性能上与相同组成的微米材料有非常显著的差异,体现出许多优异的性能和全新的功能。纳米材料在化学、冶金、电子、航天、生物和医学等领域展现出广阔的应用前景。当铁磁材料的粒子处于单畴尺寸时,矫顽力(Hc)将呈现极大值,粒子进入超顺磁性状态。这些特殊性能使各种磁性纳米粒子的制备方法及性质的研究愈来愈受到重视。开始,多以纯铁(a-Fe)纳米粒子为研究对象,制备工艺几乎都是采用化学沉积法。后来,出现了许多新的制备方法,如湿化学法和物理方法,或两种及两种以上相结合的方法制备具有特殊性能的磁性纳米材料。磁性纳米材料具有许多不同于常规材料的独特效应,如量子尺寸效应、表面效应、小尺寸效应及宏观量子隧道效应等,这些效应使磁性纳米粒子具有不同于常规材料的光、电、声、热、磁、敏感特性[2]。当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超顺磁性状态,无矫顽力和剩磁。众所周知,对于块状磁性材料(如Fe、Co、Ni),其体内往往形成多畴结构以降低体系的退磁场能。纳米粒子尺寸处于单畴临界尺寸时具有高的矫顽力[3]。小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度[4]。另外,磁性纳米粒子的饱和磁化强度(Ms)比常规材料低,并且其比饱和磁化强度随粒径的减小而减小。当粒子尺寸降低到纳米量级时,磁性材料甚至会发生磁性相变。磁性纳米材料也具有良好的磁导向性、较好的生物相容性、生物降解性和活性能基团等特点,它可结合各种功能分子,如酶、抗体、细胞、DNA或RNA等,因而在靶向药物、控制释放、酶的固定化、免疫测定、DNA和细胞的分离与分类等领域可望有广泛的应用。

2性纳米材料在生物医学领域的应用

2.1靶向药物载体技术

利用磁性纳米颗粒制造靶向输送医疗药物,是目前医药学研究的热点。通常的靶向纳米药物载体是运用了载体对机体各组织或病变部位亲和力的不同,或将单克隆抗体与载体结合,使药物能够转运到特定的治疗部位,但如果制备的载药颗粒过大,如处于微米量级,可能会引起血栓样血管栓塞,甚至导致死亡,而纳米级的磁性颗粒可以解决这个问题。磁性纳米颗粒的粒径比毛细血管通路还小1-2个数量级,用其作为定向载体,通过磁性导向系统控制,可将药物靶向输送到病变部位释放,以增强疗效。制备出生物相容性和单分散性较好的无机磁性纳米颗粒载体(主要为铁系氧化物),再用生物高分子(氨基酸、多肽、蛋白质、酶等)包覆磁性纳米颗粒载体,再将包覆好的磁性载体与药物分子结合,将这种载有药物分子的磁性纳米粒子注射到生物体内,在外加磁场的作用下,通过纳米颗粒的磁性导向性使药物更准确地移向病变部位,增强其对病变组织的靶向性,有利于提高药效,达到定向治疗的目的,从而降低药物对正常细胞的伤害,改变目前放疗和化疗中正常细胞和癌细胞统统被杀死的状况,减少副作用。动物临床实验证实,载药磁性纳米微粒具有高效、低毒、高滞留性的优点,它在治疗结束后可以通过人体肝脏和脾脏自然排泄。磁性纳米药物载体一般通过下面3种方式结合:(1)药物与高分子先结合成颗粒,磁性颗粒再吸附其表面;(2)磁性颗粒和高分子先结合成颗粒再吸附药物;(3)磁性颗粒、药物、高分子一起混合经均匀化后再颗粒化。磁性高分子颗粒作为药物载体,其中控制释放速率是影响药效的主要因素,骨架材料的选择对控释作用具有一定的影响,而搅拌速度和成型温度对颗粒控释作用也有很大影响。纳米颗粒有的微型水解通道的多少、宽窄及交联程度是决定颗粒能否控释的主要因素,而搅拌速率和成型温度对颗粒中最后形成的微型通道程度起决定作用。早期应用的载体多为葡聚糖磁性毫微粒(DextranMNP),但易被RES系统吞噬,被动靶向于肝脾,难于实现其他组织的靶向给药。后来,有人改变载体的表面的性能,使其具有一定负电性,可更好地应用于主动靶向治疗。

2.2细胞分离和免疫分析

细胞分离是生物细胞学研究中一种十分重要的技术,高效的细胞分离在临床中是首要的、重要的步骤。这种细胞分离技术在医疗临床诊断上有广范的应用,例如治疗癌症需在辐射治疗前将骨髓抽出,且要将癌细胞从骨髓液中分离出来。传统的细胞分离技术主要采用离心法,利用密度梯度原理进行分离,时间长、效果差。随着合成磁性粒子的发展,免疫磁性粒子在分离细胞方面已经获得了快速的发展经动物临床试验已获成功。其中最重要的是选择一种生物活性剂或者其他配体活性物质(如抗体、荧光物质、外源凝结素等),根据细胞表面糖链的差异,使其仅对特定细胞有亲和力,从而达到分离、分类以及对其种类、数量分布进行研究的目的。磁性粒子用于细胞分离需要考虑以下几个因素:不与非特定细胞结合、具有灵敏的磁响应性、在细胞分离介质中不凝结。免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发挥着巨大的作用。在免疫检测中,经常利用一些具有特殊物理化学性质的标记物如放射性同位素、酶、胶体金和有机荧光染料分子等对抗体(或抗原)进行偶联标记,在抗体与抗原识别后,通过对标记物的定性和定量检测而达到对抗原(或抗体)检测的目的。由于磁性纳米颗粒性能稳定,较易制备,可与多种分子复合使粒子表面功能化,如果磁性颗粒表面引接具有生物活性的专一性抗体,在外加磁场的作用下,利用抗体和细胞的特异性结合,就可以得到免疫磁性颗粒,利用它们可快速有效地将细胞分离或进行免疫分析,具有特异性高、分离快、重现性好等特点,同时磁性纳米颗粒具有超顺磁性,为样品的分离、富集和提纯提供了很大方便,因而磁性纳米颗粒在细胞分离和免疫检测方面受到了广泛关注。

2.3磁性纳米颗粒对蛋白酶的吸附及固定化

生物高分子例如酶等都具有很多官能团,可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性颗粒的表面。用磁性纳米颗粒固定化酶的优点是:易于将酶与底物和产物分离;可提高酶的生物相容性和免疫活性;能提高酶的稳定性,且操作简单、成本较低。制备吸附蛋白酶的磁性高分子颗粒的过程可以概括为:制备磁流体,在对磁流体中的磁性纳米颗粒用大分子包覆或联结,所形成的磁性高分子载体可用作亲和吸附的磁性亲和载体。作为酶的固定化载体,磁性高分子颗粒有利于固定化酶从反应体系中分离和回收,还可以利用外部磁场控制磁性材料固定化酶的运动和方向,从而代替传统的机械搅拌方式,提高固定化酶的催化效率。磁性高分子颗粒作为酶的固定化载体还具有以下优点:固定化酶可重复使用,降低成本;可以提高酶的稳定性,改善酶的生物相容性、免疫活性、亲疏水性;分离及回收酶的操作简单,适合大规模连续化操作。

2.4基因治疗

20世纪70年代,医学领域提出了“基因治疗”这一概念,即将遗传物质导入细胞或组织,进行疾病的治疗即将遗传物质导入组织或细胞进行疾病治疗。目前常用病毒载体和脂质体载体,病毒载体存在制备困难,装载外源DNA大小有限制,能诱导宿主免疫反应及潜在的致瘤性等缺点。多价阳离子聚合物,如目前广泛应用的脂质体,具有病毒载体的优点,而没有病毒载体的缺点。但是聚合物的颗粒大小是影响转染效率的因素之一。磁性纳米粒子的出现克服了它们的缺点。磁性材料直径可达10nm以下,在外磁场作用下具有靶向性。磁性材料外部包裹生物高分子,从而增强了生物相容性,对细胞无毒,而且在血管中循环时间大大延长。目前要控制阳离子聚合物大小的合成方法还不很成熟,且阳离子聚合物的细胞毒性是影响转染的突出问题。磁性四氧化三铁生物纳米颗粒的制作简单,直径可达10nm以下,具有比表面积效应和磁效应。在纳米颗粒的表面可吸附大量DNA。在外加磁场的作用下,可具有靶向性。且四氧化三铁的晶体对细胞无毒。为达到生物相容性,在磁性四氧化三铁的晶体表面可很容易地包埋生物高分子,如多聚糖,蛋白质等形成核壳式结构。由于纳米颗粒有巨大表面能,有多个结合位点,因而携带能力优于其他载体,且转染效率高于目前使用的载体,因此磁性生物纳米颗粒可成为较好的基因载体。

3磁性纳米材料应用于生物医学领域的局限性

纳米材料科学技术的发展为纳米材料的制备提供了许多新的工艺,在此基础上人们已经能够合成出单分散性比较好、形状和尺寸可控的磁性纳米材料,但磁性纳米材料目前处于研究实验阶段,有些问题还需要进一步研究解决,但目前尚处于实验阶段,有众多的问题亟待进一步研究解决:

(1)磁性纳米颗粒的特性与颗粒的尺寸、颗粒尺寸的分布、颗粒的形状和晶体结构密切相关,因而深入研究这些因素与磁性纳米颗粒性能(尤其是磁学性能)的关系,以便找到最佳的合成工艺,最终达到对材料性能剪裁的目的。从热力学和动力学两方面深入探索纳米尺度范围内材料合成机理对磁性纳米颗粒的尺寸、形状和晶体结构的影响,发展和完善单分散磁性纳米颗粒的制备方法;

(2)着重研究生物大分子在磁性纳米颗粒的组装结合机理,以提高组装的结合力和结合量,发展面向不同应用要求的组装形式和组装方法;深入分析生物大分子在磁性纳米颗粒载体上组装后对其生物功能的影响,进一步研究磁性纳米颗粒及生物高分子组装体中无机成分和有机成分对磁性的贡献以及无机成分与有机成分的磁相互作用,以期将功能设计与组装方法有机地结合起来。

(3)目前的磁性纳米材料在生物医学领域的应用研究才刚刚起步,但随着磁性纳米材料的产业化和商业化的推进,如何大批量的生产质量可靠稳定的磁性纳米材料,如何在生产过程中简化生产步骤,降低成本,以期大规模临床应用。

高分子材料的制备方法范文篇10

关键词:梯度功能材料,复合材料,研究进展

abstract:thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.thecurrentstatusoftheresearchoffgmarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

keywords:fgm;composite;theadvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而fgm即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用,并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1fgm概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5mw/m2,其空气入口的前端热通量达5mw/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000k以上的温差,传统的单相均匀材料已无能为力。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落或龟裂现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念,即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(fgm)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料。

2fgm的特性和分类

2.1fgm的特殊性能

由于fgm的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足。正如erdogan在其论文中指出的与传统复合材料相比fgm有如下优势:

1)将fgm用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将fgm用作涂层和界面层可以减小残余应力和热应力;

3)将fgm用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用fgm代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2fgm的分类

根据不同的分类标准fgm有多种分类方式。根据材料的组合方式,fgm分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料;根据其组成变化fgm分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化);根据不同的梯度性质变化分为密度fgm,成分fgm,光学fgm,精细fgm等;根据不同的应用领域有可分为耐热fgm,生物、化学工程fgm,电子工程fgm等。

3fgm的应用

fgm最初是从航天领域发展起来的。随着fgm研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的fgm,并可望应用于许多领域。

功能

应用领域材料组合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材陶瓷金属

陶瓷金属

塑料金属

异种金属

异种陶瓷

金刚石金属

碳纤维金属塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素高强度材料

耐热材料遮避材料

耐热材料遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石氧化铝

磷灰石金属

磷灰石塑料

异种塑料

硅芯片塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

ic

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压

电陶瓷塑料

压电陶瓷塑料

硅化合物半导体

多层磁性薄膜

金属铁磁体

金属铁磁体

金属陶瓷

金属超导陶瓷

塑料导电性材料

陶瓷陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素玻璃

能源转化功能

mhd发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷高熔点金属

金属陶瓷

金属硅化物

陶瓷固体电解质

金属陶瓷

电池硅、锗及其化合物

4fgm的研究

fgm研究内容包括材料设计、材料制备和材料性能评价。

4.1fgm设计

fgm设计是一个逆向设计过程。

首先确定材料的最终结构和应用条件,然后从fgm设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出fgm体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

fgm设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算fgm的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

fgm设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2fgm的制备

fgm制备研究的主要目标是通过合适的手段,实现fgm组成成份、微观结构能够按设计分布,从而实现fgm的设计性能。可分为粉末致密法:如粉末冶金法(pm),自蔓延高温合成法(shs);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(pvd)和化学相沉积(cvd);形变与马氏体相变[10、14]。

4.2.1粉末冶金法(pm)

pm法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的fgm。粉末冶金法可靠性高,适用于制造形状比较简单的fgm部件,但工艺比较复杂,制备的fgm有一定的孔隙率,尺寸受模具限制。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。pm法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的fgm有:mgc/ni、zro2/w、al2o3/zro2、al2o3-w-ni-cr、wc-co、wc-ni等。

4.2.2自蔓延燃烧高温合成法(self-propagatinghigh-temperaturesynthesis简称shs或combustionsynthesis)

shs法是前苏联科学家merzhanov等在1967年研究ti和b的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

shs法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的fgm。但shs法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用shs法己制备出al/tib2,cu/tib2、ni/tic、nb-n、ti-al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(psz)陶瓷和nicraly合金[9]。

4.2.3.1等离子喷涂法(ps)

ps法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500k,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基

体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出tib2-ni、tic-ni、tib2-cu、ti-al、nicral/mgo-zro2、nicral/al2o3/zro2、nicraly/zro2[10]系功能梯度材料

4.2.3.2激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末a放置在基底b上,然后以高功率的激光入射至a并使之熔化,便会产生用b合金化的a薄涂层,并焊接到b基底表面上

,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的fgm。用ti-a1合金熔覆ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层a的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备ti-al、wc-ni、al-sic系梯度功能材料[7]。

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如sic或al2o3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/sic复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备fgm的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到fgm膜或材料。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为tio2-ni,cu-ni,sic-cu,cu-al2o3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型fgm。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出si-c、ti-c、cr-crn、si-c-tic、ti-tin、ti-tic、cr-crn系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(pvd)和化学气相沉积(cvd)两类。

化学气相沉积法(cvd)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的fgm。另外,该法无须烧结即可制备出致密而性能优异的fgm,因而受到人们的重视。主要使用的材料是c-c、c-sic、ti-c等系[8、10]。cvd的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(pvd)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。pvd法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出ti/tin、ti/tic、cr/crn系的fgm[7~8、10~11]

4.2.4形变与马氏体相变

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(fe-18%,cr-8%ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3fgm的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上。目前,对热压力缓和型的fgm主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5fgm的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性

能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2fgm制备技术总的研究趋势[13、15、19-

20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的fgm制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对fgm的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6结束语

fgm的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段。fgm的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献:

杨瑞成,丁旭,陈奎等.材料科学与材料世界[m].北京:化学工业出版社,2006.

李永,宋健,张志民等.梯度功能力学[m].北京:清华大学出版社.2003.

王豫,姚凯伦.功能梯度材料研究的现状与将来发展[j].物理,2000,29(4):206-211.

曾黎明.功能复合材料及其应用[m].北京:化学工业出版社,2007.

高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[j].山西建筑,2006,32(5):143-144.

erdogan,f.fracturemechanicsoffunctionallygradedmaterials[j].compos.engng,1995(5):753-770.

李智慧,何小凤,李运刚等.功能梯度材料的研究现状[j].河北理工学院学报,2007,29(1):45-50.

李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[j].菏泽学院学报,2007,29(5):51-55.

[9]林峰.梯度功能材料的研究与应用[j].广东技术师范学院学报,2006,6:1-4.

[10]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[j].金属制品,2005,31(4):4-9.

[11]戈晓岚,赵茂程.工程材料[m].南京:东南大学出版社,2004.

[12]唐小真.材料化学导论[m].北京:高等教育出版社,2007.

[13]李进,田兴华.功能梯度材料的研究现状及应用[j].宁夏工程技术,2007,6(1):80-83.

[14]戴起勋,赵玉涛.材料科学研究方法[m].北京:国防工业出版社,2005.

[15]邵立勤.新材料领域未来发展方向[j].新材料产业,2004,1:25-30.

[16]自蔓延高温合成法.材料工艺及应用http://etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17]远立贤.金属/陶瓷功能梯度涂层工艺的应用现状./articleview/2006-6-6/article_view_405.htm.

[18]工程材料.http://col.njtu.edu.cn/zskj/3021/gccl/ch2/2.6.4.htm.

[19]刘清,张军.先进复合材料领域近期发展趋势[j].特别关注,2005,12:9-11.

高分子材料的制备方法范文篇11

关键词:高分子材料;成型加工;塑料加工;发展分析

中图分类号:TB324文献标识码:A

1高分子材料及其重要性

就目前来说,我国的高分子材料是由相对分子质量较高的化合物构成的复合材料,它主要有树脂或橡胶和次要成分添加剂组成,具有一定的可塑性,可挤压性,可纺性和可延性等特点。事实上正是这些特点使得其用于各种加工,深受大家的喜爱。

日常生活中所接触到的很多天然材料通常是高分子材料组合而成的,比如我们常见的天然橡胶、棉花等。但是高分子材料的最终使用形式一般来说是高分子材料的制品,高分子材料制品的性能与其成型加工过程却是息息相关的,它是受一定温度和压力的作用熔融塑化,然后通过模塑制成一定形状,冷却后在常温下能保持既定形状的材料制品。总的来说笔者认为,材料组成、成型加工方法和成型机械及模具决定了高分子材料制品的性能。

2浅述高分子材料的成型加工技术

说到高分子材料的成型加工技术是指通过外温的作用,让高分子材料的温度达到预定温度使其整体受热熔化,然后再通过成型设备加工成我们所需要的各种模型。而它的成型加工技术一般可以分为注、挤、吹、吸、拉等。而根据笔者的工作来看,所谓的高分子加工与成型有低分子聚合物或预聚物的加工、高分子熔体的加工、类橡胶状聚合物的加工等几种形式。

另外,根据加工方法的特点或高分子在加工过程中变化的特有的特征,可以用不同的方式对加工技术进行统一分类:第一个加工过程发生物理变化;第二个发生化学变化;第三个同时兼有物理和化学变化。笔者认为,这三种变化是在实际生产中比较常见的,下面根据具体的工作实践对它们分别做一论述探讨,以供同行参考。

2.1吹塑成型技术。吹塑成型技术它是把塑料经机头口模间隙呈圆筒形膜挤出,再经过机头中心吹入压缩空气,把膜管吹胀成直径较大的泡管状薄膜的工艺。这种成型技术又可以分为上引法、平引法和下引法。在这里需要特别说明的是上引法。

2.2挤出成型技术(如图1所示)。一般来说先按照管材的形状等把它冷却定型。然后再进入冷却水槽冷却,再经过牵引装置运送至切割装置切成所需长度。在成型方法上有外径定型和内径定型两种。

2.3压制成型技术(如图2所示)。一般这种技术主要用于热固性塑料的成型上。而在现实生产技术中,把它分为模压成型和层压成型两种类型。这两种技术相比较而言,他们的生产过程控制、使用设备等比较简单,适用于大型制品上。

2.4双向拉伸薄膜技术。就双向拉伸薄膜技术而言,是把狭缝机头平挤出来的厚片经纵横两方向同时拉伸,并且在拉伸的情况下进行热定型处理的方法。

2.5注射成型技术。一般来说,注射成型技术广泛用于热塑性塑料的成型,也用于某些热固性塑料的成型。它的原理是将粒料置于注射机的料筒内加热并在剪切力作用下变为粘流态,然后以柱塞或螺杆施加压力,使熔体快速通过喷嘴进入并充满模腔,冷却固化。

2.6压延成型技术。它是通过一系列相向旋转着的水平辊筒间隙,使物料承受挤压和延展作用,成为具有一定厚度,宽度与表面光洁的薄片状制品。当制品厚度大于或低于这个范围时,一般均不采用压延法而采用挤出吹塑法或其它方法。

3高分子材料成型加工技术的发展趋势

随着经济不断地发展,现在有些企业将高分子材料的研究应用纳入自主知识产权的新技术中。据笔者的不完全统计来看,塑料电磁动态塑化挤出设备已形成了7个规格系列,还有部分新设备销往荷兰、孟加拉等国家,产生了良好的经济效益和社会效益。另外还有塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的正在生产试用,并逐步推向市场目前新设备的市场需求情况很好。

结语

根据上面文章的整体论述,笔者认为我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的这样的一条道路,并且根据实际情况实现由跟踪向跨越的转变;同时还要把握技术前沿,培育自主知识产权。只有这样,我们的高分子材料在经济快速的发展大格局中才能利于不败之地。

参考文献

[1]孙国瑞.对高分子材料成型技术的思考[J]科海故事博览·科技探索,2012(07).

高分子材料的制备方法范文1篇12

关键词:相变;储能材料;微胶囊

能源是人类赖以生存和发展的基本,是推动社会进步和改进所必需的物质基础。但是由于能量的供给和需求都存在一定的时效性,在许多情况下,人们还做不到合理的利用能源。相变材料作为一种储热和调控温度的材料,已经成为人们当前注重的焦点。人们利用储能材料具有一定的能量储蓄存放的功能,来储存或者是释放其中的热量,从而达到一定的调节和控制此种相变材料周遭环境的温度,来达到所需的目的,提高了能源的利用率。

1.相变储能材料简介

1.1相变材料的含义

利用这些物质在自身发生相变过程中的吸热和放热的特殊性质,可以将热能储存起来和释放出来,从而实现了调节和控制周围环境温度的目的,我们将此种具有热能的储存和调控温度的功能物质称为相变材料。物质的存在状态通常有三相:固相、液相和气相。当物质从一种相太变化到另一种相态叫相变。相变的形式主要有四种:(1)固-固相变;(2)固-液相变;(3)液-气相变;(4)固-气相变。当一种物质能够发生四种相变中的任意一种相变时,都可称为相变材料。如果从发生相变的过程来看,这种相变材料在吸热和放热的过程中,能够把热能储存起来,并对其周围环境温度调节控制。

1.2相变材料的特点

热能储存的方式一般有显热、潜热和化学反应热三种。相变材料是利用自身在发生相变过程中吸收或释放一定的热量来进行潜热储能的物质,该材料是通过材料自身的相态变化或结构变化,向材料的周遭环境自动的进行吸收或释放一定的潜热,从而达到改变或者是平衡环境温度,实现了调节控制周遭温度的物质,一般来说,此种物质具有储热密度高、自身体积小、热效率高以及放热过程保持恒等温度等优点。由于性能的限制,相变材料有一些特定的要求,比如说:(1)化学性能方面:在反复的相变过程中化学性能稳定,可多次循环利用,对环境友好,无毒,使用条件安全。(2)物理性能方面:材料发生相变时的体积变化小;放热过程温度变化稳定。(3)经济性方面:材料的价格比较便宜,并且较容易获得。

1.3相变材料的分类

根据物质成分的不同:可以将相变材料分为无机相变材料、有机小分子相变材料和高分子相变材料。其中无机盐种类的相变材料常见有:熔融盐类、结晶水合盐类等;有机物小分子种类的相变材料常见有:酰胺类、高级脂肪烃类、脂肪酸或其酯或盐类、醇类、芳香烃类等;高分子类的相变材料则有:聚烯烃类、聚烯酸类、聚烯醇类、聚多元醇类、聚酰胺类等。

根据相态变化的形式:相变材料又可分为固-气相变材料、液-气相变材料、固-固相变材料及固-液相变材料。固-液相变和固-固相变是人们经常使用的相变材料种类。固-气和液-气类型的相变材料在其本身相变过程中有气相产生,相变材料的自身体积变化方面比较明显,这样的话就使得他们在应用方面的范围变的比较窄。固-固相变材料和固-液相变材料的在发生自身相变的过程中,他们自身的体积变化相对来说还是较小的,并且固-固相变材料对容器的密封性以及强度方面的要求不怎么高,但他们的总体类型在自然界中相对比较少,在当前的实际应用中也很少见到。固-液相变材料的研究比较早并且在当前的科学研究中相对比较成熟的一类相变材料,这类材料的成本低、相变潜热大、相变温度分布比较宽泛,所以,固-液相变材料在应用中是最为广泛的一种。

根据温度范围:这些相变材料又可以分成低温、中温和高温等等。其中低温相变材料的相变温度范围一般在20℃-200℃之间,中温相变材料的相变温度范围一般在200℃-500℃之间,高温相变材料的相变温度范围则为500℃-2300℃之间。一般来说,低温相变材料的储能密度比较大,温度范围覆盖面广,是目前固-液相变储热的主要研究对象。

1.4相变材料的研究现状及发展趋势

国际上游很多国际对相变材料在进行科学实验工作,这方面美国一直在科学前沿。最早对相变材料研究是出于节能的想法,所以最初常见到的是太阳能或者是风能等方面的利用以及对废弃的热量进行回收,经过较长时间的发展以来,相变材料已经慢慢的向化工领域渗透。MariaTelkes博士从1950年就着手对相变材料进行研究,他发现化学物质硼砂可以把十水硫酸钠过冷度降低将近3℃,并预计测出了该材料的相变次数可以达到2000次。在工程建筑应用方面,美国科学实验室已成功研制一种利用十水硫酸钠共熔混合物做相变芯材的太阳能建筑板,并进行了试验性应用,取得了较好的效果。美国的Dayton大学的J.K.Kssock等人将十八烷做为自己的实验相变材料,采用了浸泡法制成相变墙板,然后建筑了一个相变墙实验房和一个普通墙实验房进行比较,试验显示出相变墙板房内的温度相对来说比较平稳,如果将相变墙应用在实际建筑物中,可以适当的提高居住的舒适性、削减电力的高峰负荷。

目前在研究的发展趋势中,相变材料的研究主要表现为:开发复合储热材料;研发复合相变材料的多种工艺技术;纳米技术在复合相变材料领域的深入应用。

2.相变材料的微胶囊化

如何将相变材料进行有效的包装,一直是相变材料研究领域的研究重点。较为先进的纳米复合法是将纳米材料的界面效应和较大的比表面积与相变材料的优点结合在一起,可制得高传热效率的复合相变材料。目前,微胶囊可以较好解决相变材料在流出和外渗方面的问题。目前,在微胶囊相变材料的制备过程中,很多人选用了三聚氰胺甲醛树脂(MF)、脲醛树脂(UF)作为壁材,所制备的微胶囊在某些性能方面有较好的表现:强度较高、耐热性能好。

2.1微胶囊技术

把固体或液体用某种膜材料包覆起来,然后形成微小粒子的技术,称之为微胶囊封装技术。球形微粒芯材在升温时,由固态时转变为液态,但外层包封的高分子薄膜层仍保持其固态,因此材料的外貌形态仍为固态颗粒。微胶囊包覆芯材,外层的壳物质称壁材;被外层壳材包覆的囊心物质称芯材。芯材可以是由单一物质组成,也可以是由混合物质组成;它的形态可以是固体、溶液、水分散液或油剂,也可以是一些特定的气体。微胶囊的粒径大小在1~1000微米范围内,它的微观形貌通常需要借助电子显微镜才能观察到。相变微胶囊技术是一种新工艺,它在化工、医药、农业等领域已经有了较大的发展,并且在科研领域中得到了越来越多科研人员的重视。微胶囊技术的应用前景非常广阔,主要表现为以下优点。

2.1.1改善物质的物理性质

(1)液态转变成固态。当液态物质经过壁材包覆微胶囊化后,可得到细粉状产物,称之拟固体(pseudo-solid)。虽然在外貌形态上它具有固体特征,但其内部芯材仍然是液体,因而内部芯材液相仍具有相应的反应性,这种外部有壳、内部芯材性质不改变的特性在某些场合中有其特别的用处。

(2)改变重量或体积。芯材经过微胶囊化以后,物质的重量会增加或减少。在某种工艺条件下,制成的微胶囊内部可以含有空气或成为空芯,这样导致物质的体积增大了,于是经过微胶囊化后的密度大的固体便可以漂浮在水面上了。

(3)良好的分离状态。充分利用微胶囊的细分特性将其应用于生产实际中。例如在涂层工艺方面:在等量浓度下,其粘度较低是微胶囊的一大优点;另一优点是微胶囊材料能以粉末的形态分散于涂层当中。

2.1.2控制释放

在可以控制的工艺条件下,微胶囊中活性组分在释放时,可以采用立即释放、延时定时释放或适当的长效释放等多种释放形式。

2.1.3保持芯材稳定性

(1)保持芯材的抗氧化性;(2)保护具有吸水性的芯材物质;(3)避免液体环境中pH值对芯材的影响;(4)降低芯材的挥发性。

2.1.4减少芯材的对周围环境的毒副作用

微胶囊化将硫酸亚铁、乙酰水杨酸(阿司匹林)等药物包囊后,可以控制药物的释放速度来减轻对肠胃刺激。药物微胶囊化对于制药工业来说,具有一定的前沿性。

2.1.5屏蔽芯材味道

某些化合物(如药物)具有一些刺激性气味,利用微胶囊化进行包覆,可以适当减少这些物质的气味。

2.1.6气味控制释放

很多香料或香精,例如:水杨酸甲酯和薄荷油,可通过微胶囊化来防止芯材气味的挥发。

2.2微胶囊芯材和壁材的选择

微胶囊相变材料中的芯材可以是油溶性,也可以是水溶性的化合物。界面聚合法制备微胶囊时,要求参加反应的这两种反应单体分别存在于乳液中不相混溶的分散相和连续相当中,而聚合反应应发生在相界面上,由于在水相溶解的聚合单体存在于有机溶剂中时也有一定溶解度,所以它会通过相界面进入有机相一侧,所以常常在有机相侧发生聚合反应。微胶囊化要想顺利的进行,壁材的表面张力较芯材的应小,并且芯材与壁材之间不能发生任何的化学反应。

微胶囊化常用的芯材有:醇类、无机盐、石蜡类、酯类、脂肪酸等单一相,或将几种材料相复合,得到复合芯材。微胶囊产品的性能应考虑微胶囊壁材的选择。选择壁材时要考虑到其稳定性、耐久性等因素;还要考虑芯材的性质,微胶囊产品的在应用方面等性能要求,聚合物对于被包囊物质以及对于周围介质的溶解能力,聚合物的弹性、韧性、渗透性、熔点及玻璃化温度、溶解性及单体的性质。

微胶囊壁材常见的有无机材料和高分子材料两大类。无机材料壁材主要有Pb、Cu、S等无机单质和ZrO2、TiO2、硅酸盐等无机化合物,但微胶囊壁材以无机材料为基础时的成膜性比较差;而高分子材料作为微胶囊壁材时的成膜性比较好,所以常见的是用高分子材料作为壁材。当前科研中可作为壁材的高分子材料主要有:天然高分子材料、半合成高分子材料和合成高分子材料。

2.3微胶囊化的方法

微胶囊化的常见方法有:物理机械法、物理化学法和化学法三种类型。物理机械法的特点是通过微胶囊壁材的物理变化,制备的主要方法有:喷雾干燥法、真空蒸发沉积法、空气悬浮法、静电结合法、多空离心法等。物理化学法特点是改变反应的工艺条件,使溶解状态的壁材材料从溶液中聚沉出来,将芯材包覆形成微胶囊,主要的物理化学方法有:水相相分离法、油相相分离法、干燥裕法、融化分散法与冷凝法等。化学法主要是:小分子反应聚合,生成高分子成膜材料,然后将所要包覆的芯材包覆起来,它使用的主要聚合方法有界面聚合法、原位聚合法。重点介绍一下经常用到的微胶囊化方法:原位聚合法、界面聚合法和喷雾干燥法。

2.3.1原位聚合法

原位聚合法制备相变微胶囊时,将芯材分散成液滴,聚合单体在芯材液滴表面上形成较低分子量的预聚物,随后这些预聚物的分子链逐步增大,并沉积在芯材液滴的表面上,聚合反应逐渐的进行,最终形成了固体微胶囊外壳。原位聚合法是以可溶性单体或预聚物聚合反应生成不溶性聚合物为基础的。原位聚合法制得的微胶囊,一般来说它的囊壁坚韧、粒径分布均匀。我们常见到的聚脲、聚酰胺、密胺等高分子材料就可作为原位聚合法的壁材。

2.3.2界面聚合法

界面聚合法制备微胶囊时,微胶囊的外壳是通过两类互不相容性单体的聚合反应而形成的。参与聚合反应的单体至少有两种,其中必须存在两类单体,一类是油溶性的单体,另一类是水溶性的单体。它们中的一种在芯材液滴的内部,一种在芯材液滴的外边,然后在芯材液滴的表面反应聚合,形成聚合了微胶囊的壁材薄膜。这种制备微胶囊的方法具有工艺简单、反应速度快、效果好、设备便宜、反应温度要求不高等特点,避免了反应中要求严格控制温度给操作带来的不便。界面聚合的步骤如下:将芯材溶于含有单体A的分散相中,然后在乳化剂的溶液中乳化分散,再将反应单体B溶于少量的连续相溶剂中加入乳液;单体A、B分别从油相和水相内部向乳状液滴的界面处移动,此时在相界面处反应聚合,形成聚合物壁材,包覆了相变芯材。界面聚合法反应速度快,反应条件温和,是制备相变微胶囊的一种常用方法。

2.3.3喷雾干燥法

喷雾干燥法是将芯材和壁材混合后,通入加热或冷却装置,使其脱除溶剂凝固得到微胶囊,一般是先将壁材溶于溶剂中,然后将芯材在壁材的溶液中乳化,最后进行喷雾干燥。

3.微胶囊的现状进展

Triangle以正二十一烷和正十八烷双组分PCM作为相变芯材,制成微胶囊PCM,可以用在某些需要降温的设备领域。如今,美国Outlast公司积极研发相变材料,研制了较多的相变材料产品,其中Outlast纤维就属于微胶囊包覆石蜡烃。Gateway公司也提到了:同样的厚度下,Outlast的调温产品与比其他的隔热材料效果能提高25%。

K.Hong和S.Park采用界面聚合法、原位聚合法制备了包覆不同相变材料的微胶囊。任晓亮、王立新[1]等采用界面聚合法,以甲苯2、4二异氰酸酯(TDI)、二亚乙基三胺(DETA)为壁材单体,制备了以十八烷为相变芯材聚脲微胶囊;通过DSC分析,相变储热微胶囊仍具有十八烷的相变点28.6℃;以聚脲为壁材制得的微胶囊有一定强度,可用于墙体,一定程度上缓解了建材在使用和开发过程中造成的环境污染和能源浪费。邓磊、林休休等[2]用甲苯2、4(2、6)二异氰酸酯(TDI)为壁材原料,由原位聚合法制得了Fe3O4聚脲微胶囊,将Fe3O4包覆于聚脲中,既能起到与磁性微球中Fe3O4相同的作用,又不易流失,而且颜色变浅、密度减小、分散性提高,从原来的亲水性变得完全疏水性,增大了与有机溶剂的相容性,可分散于丙烯酸异辛酯、丙二醇二丙烯酸酯、丙烯酸丁酯、二乙烯三胺、甲苯、乙醇、乙醇水溶液、二缩三乙二醇等有机溶剂中,且能稳定存在180天以上,能更好的应用于涂料、油墨、粘合剂等领域。中国科学院大连化学物理研究所的邹光龙、兰孝征[3]等用界面聚合法,合成了直径大约2.5μm可用于热能储存含相变材料的聚脲微胶囊.在含有乳化剂的水溶液中,将溶有芯材正十六烷的有机相乳化成微米级油性液滴,随后加入的水溶性单体二胺与甲苯2、4二异氰酸酯在胶束界面相互反应形成囊壁.分别用乙烯二胺,1、6-己二胺和他们的混合物作为水溶性单体进行了研究,并用红外光谱和热分析分别考察了不同胺类对微胶囊化学结构和热性质的影响,得出含正十六烷的聚脲微胶囊能耐受约300℃的高温。

4.结语

微胶囊技术封装相变材料具有其优越性。随着微胶囊技术的不断发展和成熟,微胶囊材料会逐步渗透到生产和生活的各个领域。但是,当前微胶囊制备中存在着较多不足,如工艺复杂、制备成本高,同时还有一些性能有待提高,工业化应用条件仍需摸索。所以今后应将主要精力放在简化制备工艺、降低成本上;提高微胶囊热导率、使用寿命、PCM含量等等。(作者单位:兰州理工大学石油化工学院)

参考文献:

[1]任晓亮,王立新,任丽.聚脲型相变微胶囊的制备.生态设计与环境材料.2005.

    【公文范文】栏目
  • 上一篇:智慧城市创新性(6篇)
  • 下一篇:员工年终述职报告(6篇)
  • 相关文章

    推荐文章

    本站专题