高中作文网

继电保护发展方向范例(12篇)

时间: 2024-03-29 栏目:公文范文

继电保护最新发展方向范文篇1

关键词:继电保护;现状;发展

中图分类号:TM77文献标识码:A文章编号:1671-7597(2012)0110026-01

0引言

江苏省江都引江水利工程管理处是中国南水北调工程东线的起点,是集远距离输水、灌溉、排涝、调水、发电等重大功能于一体的综合性水利工程。是全中国乃至远东地区最大的电力排灌站。整个枢纽工程有4座大型电力抽水机站、5座大型水闸座中型水闸、以及输变电工程等大量的电力设备,电力系统的各项保护设施对于整个工程的安全运转起到了至关重要的作用。而继电保护作为电力系统安全运行中的重要构成部分和核心技术保障,其技术发展历经了最早的熔断器,其后出现的以断路器为核心的电磁式继电保护装置、电子式静态继电保护装置,以及最近发展迅速的以远动技术、信息技术和计算机技术为基础的微机型继电保护装置这几个主要进程,推动继电保护技术向着网络化、智能化的方向飞速发展。

1继电保护的作用与基本原理

电力系统在运行过程当中,由于受到外界和内部以及误操作等原因,可能引起故障或者不正常的工作状态,而故障和不正常的工作状态都可能引起系统事故。当发生系统故障的时候,应尽快的将故障设备切除,保证无故障设备的正常运行,力求将事故范围缩减至最小。而切除故障的时间又必须是极短的,否则故障就会瞬间影响整个系统,在这个极短的时间内,靠值班人员来切除故障显然是不可能的,这就要靠装在每个电气设备上的具有保护作用的自动装置,即继电保护装置来完成这个任务。所以继电保护装置在电力系统中的主要作用就是通过预防事故或缩小事故范围来提高系统运行的可靠性,它是系统安全运行中一个不可缺少的重要组成部分。

继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

2继电保护的历史及现状

继电保护的发展历史是随着电力系统的发展而发展起来的,最初得到广泛运用的是继电保护装置是熔断器,之后随着技术的演进,继电保护装置从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置,20世纪末,随着大规模集成电路技术的飞速发展,微型计算机得到了普及,这一时期,新兴的计算机技术在继电保护上得到了广泛的运用,目前得到最广泛运用的是微机继电保护技术,即微型计算机构成的继电保护部分。目前除在少部分地区电磁式保护技术还在发挥着余热外,微机继电保护技术已经得到了广泛的应用。目前我处的继电保护已经完成了从电磁式继电保护向微机继电保护的改造,微机保护已在排涝抗旱中发挥着巨大的作用。

微机继电保护技术发端于20世纪60年代中后期,随着计算机技术的发展与普及,微机保护得到了越来越广泛的运用。与传统的继电保护技术相比,微机保护技术有着动作正确率高、可视化程度高、便于远程控制等特点,其通过对电力系统信号进行采样,并转换为数字信号,由计算机来对数字信号进行运算、判断并采取相应的动作,通过编程来实现需要的逻辑,并且在需求改变时,只需要改写程序即可实现新的系统要求而无需改变硬件,极大的方便了系统的调试与升级。更重要的是,运用微机保护技术,可以对整个保护系统进行网络化、智能化改造升级。

3继电保护的发展方向

继电保护技术发展到今天,其设计已涉及计算机技术、通信技术等各领域,并且与各种高新技术相互结合渗透,向着智能化、网络化的方向发展。

3.1智能化。继电保护的是对电力系统中的故障、异常进行检测、报警、排除的技术,其涵盖了对信息的搜集、决策判断以及采取措施,目前普遍采用的微机保护技术是通过编程使计算机对特定的信号输入采取固定的动作,其决策判断的过程是已编程固化的对已知问题的解决办法,而对其定义之外的故障信号则很可能误动,如果可以实现决策判断的智能化,将大大减少决策失误,提高整个系统的自动化程度。目前基于计算机技术的人工智能技术迅猛发展,可通过智能决策支持系统(IDSS),将人工智能与继电保护的学科知识相结合,运用计算机模拟专家经验,解决继电保护中的决策问题,实现继电保护的智能化。目前国内外在智能决策支持系统方面的研究已取得了一定的成果,但离大规模运用还有一段距离,随着人工智能技术的不断发展,将来在继电保护方面的智能决策系统一定会日臻完善,真正实现保护的完全智能化、自动化。

3.2网络化。随着科技的不断发展,现代通信技术已经进入了网络化的时代,各种通信网络已经进入了人类社会的方方面面,通信技术的发展成果也在继电保护学科中得到了大量广泛的应用,继电保护系统将不再局限于查找与解除故障,更重要的是要保护整个电力系统的安全运行,继电保护的网络化将使每个保护单元都能了解系统中其他保护单元的运行状态,从而正确的采取保护措施,确保系统的稳定运行。从更广的视角去观察,将整个电力系统中的部件都接入到一个网络中去,在网络中共享数据,由网络对各个部件进行监视、操作,实现对整个系统的远程控制。新一代的物联网技术的兴起,极大的扩展了原有的互联网的概念,将原有继电保护技术进行物联网改造,使系统中各部分的通信,用户与系统的通信提升到了一个新的高度,并且运用先进3G通信技术,将联入物联网的系统与手持智能设备相连,使得对整个系统的监视、控制更加实时、简单,将极大的方便继电保护人员的工作。将继电保护网络与其他专业网络相连,例如智能决策网络等,也将扩展整个系统的功能,提升系统的健壮性。通过网络化的改造,将使得继电保护的性能与可靠性得到大幅度提升。

3.3测控保一体化。在微机继电保护装置的保护下,值班人员可以真正的实现远程控制。微机保护可以将测量、保护和通信数据直观的反映在计算机中,使值班人员可以在控制室中就可以对设备进行远动操作。这种情况下的继电保护,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。这样所有的数据都可以反应在一台计算机上,直观方便,大大减少了人员开支,提高了保护的效率。

继电保护最新发展方向范文

【关键词】电力系统;继电保护;应用

1.前言

继电保护技术的发展是电力安全发展趋势的一种必然选择,也是企业在供电过程中不可缺少的一种重要应用工程。该技术的运用必将随着电力的不断发展而提升。在现代化的电力需求中,家电设备增多、企业用电机器增多、发电机容量增大等多种客观方面的原因使得电力系统中正常工作电流和短路电流都不断增大。这就需要一种既能够保护机器正常运转,又能够对短路等用电现象提出及时警报的技术。无疑,继电保护技术便应运而生。本世纪初随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这就促进科技工作者做出很大努力,确保电网的有序合理的进行。

2.继电保护的基本要求

电力系统继电保护的基本要求包括选择性和速动性。当发生故障时,继电保护不仅要有选择地切除故障路线,而且要在保障可靠性和稳定性的前提下尽量快速地执行,以最大限度地减少故障造成的损失。这种在电流瞬时增大时动作的电流保护就是电流速断保护。传统的速断装置是在离线状态下,假定工作在最大运行方式下,线路末端发生短路时确定出整定值并让设备依据这个值来进行保护工作。随着电力系统的不断发展,电网结构越来越复杂,其规模越来越大,而且处在不断地变化之中,使电力系统故障变得多种多样,这使得传统的速断保护装置显得力不从心。一方面,整定值虽然相对合理,但与实际运行状态仍有区别,它必将导致保护装置不能总是运行在最佳状态;另一方面,整定值是假设工作在最大运行方式下得到的,当系统运行在其它(或最小)运行方式时,保护可能失效。自适应电流速断保护出现在20世纪80年代,它的特点是可以根据电力系统的运行方式和故障状态实时改变保护性能和整定值。这种集实时信息采集、信号处理及微机继电保护等新技术于一体的技术装置很好地解决了上述问题。

3.继电保护安全运行要求

3.1一般性检查的重要性

一般性检查在现场是容易被忽略的项目,工作人员应该认真去做。一般性检查大致包括以下两个方面:首先清点连接件是否紧固焊接点是否虚焊等机械特性。现在保护屏后的端子排端子螺丝非常多,特别是新安装的保护屏经过运输搬运,大部分螺丝已经松动,在现场就位以后,必须认认真真一个不漏地紧固一遍,否则就是保护拒动,误动的隐患。其次是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。

3.2继电保护装置检验

将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作网。电流回路升流和电压回路升压试验,也必须在其它试验项目完成后最后进行。在定期检验中,经常在检验完成后或是设备进入热备状态,或是投入运行而暂时没负荷,在这种情况下是不能测负荷向量和打印负荷采样值的。

3.3工作记录和检查习惯

工作记录必须认真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案,在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。工作完成后认真检查一遍所接触过的设备是一个良好的习惯,它往往会发现一些工作中的疏漏,对于每一位继电保护工作人员来说都应该养成这一良好的工作习惯。

3.4接地问题

保护屏各装置机箱的接地问题,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。最重要的是,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上,并且用绝缘表测电阻是否符合规程要求。

4.新技术在继电保护中应用

微机继电保护技术未来发展趋势向着网络化、智能化,保护、控制、测量和数据通信一体化方向发展。随着计算机技术日新月异地发展以及微机继电保护的广泛应用,新的控制理论和方法被不断应用于微机继电保护中,希望取得更好的保护效果,从而推动微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势。

4.1继电保护网络化

网络作为信息和数据通信工具已成为信息时代的技术支柱,使社会生产和社会生活发生了翻天覆地的变化。也为微机继电保护提供了强有力的通信支持。到目前为止除了差动和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于快速、准确地切除故障元件,尽量缩小事故范围,其主要原因是缺乏强有力的数据通讯、数据处理、数据上传的联网手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置实现网络化,将每一点的保护装置都串联起来,统一由主站协调管理,即实现微机保护装置的网络化。实现微机保护装置的网络化,可以在最短的时间内,准确地判断出故障的性质、位置及故障参数的检测、发生故障的原因等,并在最短的时间内发出指令给相应的保护装置,快速切除故障,缩小故障的范围,提高整个系统安全性、可靠性。

4.2自适应控制技术在继电保护中的应用

自适应继电保护的思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。

4.3人工神经网络在继电保护中的应用

专家系统、人工神经网络(ANN)和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。基于生物神经系统的人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点。其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题。近几年来,电力系统继电保护领域内出现了用人工神经网络来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。如用人工神经网络原理来实现高压输电线路的方向保护,提出用BP模型作为方向保护的方向判别元件。研究结果表明,该方向判别元件能准确、快速地判别出故障的方向。该方法充分说明了人工神经网络所具有的强大的自适应能力、学习能力和模式识别能力。

4.4变电所继电保护综合自动化技术

目前,广泛应用的变电站继电保护自动化系统为常规自动化系统,是应用自动控制技术、计算机信息采集和处理技术、通信技术,代替人工对变电所进行正常运行的监视、控制、操作、测量、记录和统计分析、故障状态的监视、报警和事件顺序记录与运行操作,大多不涉及继电保护、紧急控制、故障录波、RTU、维修状态信息处理等功能,整体功能相对简单。现代通信技术、计算机技术和网络技术为改变变电所目前保护、监控和计量装置等系统相互分割的状态提供了优化组合和系统集成的技术支撑。随着高压、超高压电力网的发展,继电保护和综合自动化的紧密结合己成为可能,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(RTU)、微机保护装置为核心,将继电保护、控制、测量、信号、计费等功能纳入微机系统,取代传统的控制保护屏,能够大大降低设备投资和变电所的占地面积,提高一次设备的可靠性。随着微机性价比的不断提高,通信技术的迅速发展,以及标准化规约的陆续推出,变电站综合自动化成了必然发展趋势。

5.结束语

我国电网规模不断扩大,电力系统设备不断改进,电压等级不断提高,电力系统的安全稳定运行就显得尤为重要。继电保护装置作为电力系统最重要的组成部分,其安全可靠、稳定运行就成为电力系统最为关注的问题。

参考文献:

[1]吴雪峰,邱海,吕赢想,继电保护设备状态检修的探讨[J],浙江电力,2011,(05).

继电保护最新发展方向范文1篇3

关键词:智能电网;继电保护;影响分析

中图分类号:TM77文献标识码:A

1概述

随着科技的不断发展,各类新型的技术也得到不断的研发,智能电网也不例外。智能电网拥有自愈性、稳定性、兼容性和高效性等优良特性,在全球各个国家的电力系统中也得到了广泛的应用。智能电网目前在各国的研究应用中,尚处于初级阶段,并且其定义也没有明确的内容。而继电保护是电力系统中的重要组成部分,对于电力的控制、测量和网络化的普及等方面有着非常深远的发展意义。特别是目前智能电网还处于初级发展期,所以就给继电保护提出了更多的要求。智能电网在我国的应用发展中,基本上已经完成了信息化、自动化和数字化的建设,并且还在大力建设中。而各种先进电力技术的应用也给继电保护带来了很大的影响,下面基于这些影响,来探究智能电网中继电保护的应用。

2智能电网中继电保护的构成

继电保护是电力系统中的重要技术,参与了电力系统控制和测量等多个方面的工作。在智能电网的应用中,首先采用各类传感器对电力系统中的输电和供电等主要设备进行全方位的监控;然后把监控所得的信息通过可行的通道传递到电力网路系统中进行整理和分类,最后把整理分类好的数据进行一定的分析,并根据各个设备的运行状况和极值标准,对设备进行远程的调整。此外,一个保护装置不仅仅需要采集保护设备的各种信息,还需要掌握与此保护设备相联合的其它设备的信息,以便于在没有人工关注的时候,能够最大程度的把系统的故障降到最低。因此智能电网中的继电保护在实际的保护工作中,不仅能够跳保护设备,还能够对保护设备的各个关联节点发出连跳命令。

3智能电网对继电保护的影响分析

智能电网主要是以物理电网为主要组成部分,并通过传感技术、信息技术、控制技术和计算机网络技术等先进技术把电网系统中各个部分联接起来,构成一个智能化的电网系统。而继电保护是智能电网的第一道安全防线,其应用也受到了智能电网的各方面影响

3.1数字化

目前的智能电网最大的特点就是数字化,其主要包括两个方面:第一是通过各种数字接口与电子互感器而实现的测量手段的数字化;第二是利用光纤网络数字传输代替传统的状态量电缆传输与模拟量的电缆传输而实现的信息传输数字化。电子互感器拥有体积小、高绝缘性等特性,并且其利用光电转换的测量原理也给继电保护带来了较宽的传输频带和较好的暂态性能,消除了传统电容式电压互感器与电磁式互感器的测量误差。因此,在未来的继电保护发展中,其工作重心就应该是简化继电保护的辅助功能,并且能够用数字化的传感器最大程度的提升继电保护的成效性。

3.2网络化

目前我国的数字化变电站建设已经开始普及,整个电力系统也在朝着网络化的方向发展,这些对于继电保护也有着很大的变革。对于这些变革,主要体现在两个方面:第一是信息的获取。变电站的网络化给继电保护带来了网络上的共享式,使得其不再局限于单单保护自己的设备,从而把变电站所有的设备信息紧密的联系在一起;第二是信息的发送。网络化的信息传输方式使得控制信号更加精准和及时的在整个系统中传递。

3.3广域化

随着电网信息化在我国的深入推广和发展,我国很多区域都开始大力推广基于PUM的WAMS网络建设,并且已经完成了初步的建设,并且这也将是智能电网在控制环节的重要部分。虽然从建设初衷上来看,WAMS网络建设并不是以智能电网的继电保护服务为出发点的,但是因为其包含的广域性却可以大大的提高继电保护设备的性能,进一步提升整个装置安全性能。

3.4输电灵活化

智能电网最大的特性就是能够大大提高输电的效率,使得整个电力系统的控制更加的灵活。因此,在智能电网中有着很多静止无功补偿装置、统一潮流控制器和电能质量控制装置等一系列的交流灵活输电技术。不仅如此,我国电网特有的交直流混合输电也大大增加了整个电网系统中的非线性可控电力元件的数量。以电力电子元件为主体的智能电网和以旋转元件为基础的传统电网之间有着非常明显的差别,因此也给目前电网中的继电保护装置带来了很大的影响。

3.5整定自动化

传统电网中的继电保护往往只针对被保护的线路,并且其调整定值因为单线信息的局限性也有很多的偏差。而智能电网继电保护能够把整个电力系统中被保护的线路和与线路有关的设备有机联合在一起,集中整个系统中各个部分的运行信息,从而对系统进行分布协同的保护,大大增加了继电保护的精准度和适时度。

4继电保护在智能电网中应该注意的问题

4.1适时调整保护定值

首先,由于智能电网运行方式的灵活性以及潮流流向的不确定性,需要相应的保护定值拥有较为良好的适应能力。继电保护中的距离保护和电流保护在实现的时候,就要保证保护定值能够跟随着运行方式的变化而相应的变化;其次,继电保护的保护功能也需要跟随着运行方式的变化而做出相应的调整;最后,还要注意周围的环境条件对于保护定值的影响。其主要是因为智能电网中的各类传感器对于温度和容量的敏感度相对较高,微小的温度和容量都会给最后的结果带来变化。

4.2改变继电保护的配置形态

智能电网的数字化和网络化使得继电保护信息获取和发送的媒介发生了很大的变化,并且主保护的性能也会因为网络化的信息而得到提升,而继电保护的配置也会利用网络共享的控制信号而发生一定的变迁。此外,共享信息在广泛利用的同时,还要注意信息传输的安全性和精准性。

4.3提高安全自动装置的性能

由于智能电网信息广域化的广泛应用,提高了安全自动装置和实践敏感性不强的后备好糊装置的性能,进而使得这些装置的延时整定得到大大的改善,从而避免大范围定点事件的发生。

4.4继电保护新技术的应用

随着太阳能和风能等新兴能源的广泛应用,也给智能电网中的继电保护带来了很大的安全问题。此外,智能电网的灵活控制方式主要是靠电力电子控制来实现的,且也改善了传统电网的故障暂态,因此对于适应于当下智能电网的继电保护新技术的研究也是未来继电保护的关键问题。

结语

随着社会经济的发展,电力系统的各种先进技术也会得到更有深度的研发。而智能电网中继电保护的应用作为电力系统的重要部分,在未来的发展中必将有其新的意义和内涵。而我国的智能电网目前还处于急速的发展期,因此继电保护的研究也会有更深远的发展前景。作为一名智能电网的管理和研究人员,在当下更应该对智能电网中继电保护的核心内容进行深入的了解和掌握,结合继电保护当下的应用重点和未来的发展趋势,透彻的分析到智能电网对继电保护的影响因素,促进智能电网在未来的发展。

参考文献

[1]张保会,郝治国.智能电网继电保护研究的进展(二)—保护配合方式的发展[J].电力自动化设备,2010(02):1-4.

[2]崔雨晴,王潇洋,章建明,杨凡弟,苏再卿.电力系统继电保护发展探究[J].中小企业管理与科技(下旬刊),2012(03):305-306.

[3]薄志谦,张保会,董新洲,曾祥君,李斌.保护智能化的发展与智能继电器网络[J].电力系统保护与控制,2013(02):1-12.

继电保护最新发展方向范文篇4

【关键词】继电保护;基本作用;分类;发展

在现代电力系统中,若没有继电保护装置,想要维持正常工作是不可能的。随着电力系统的不断发展,继电保护装置也应不断的进行革新和完善。只有这样才能保证电力系统的正常工作,才能更好地为社会服务。

一、继电保护的基本作用及任务

电力系统继电保护的基本作用是:在全系统范围内,按指定分区实时的检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警等措施,以求最大限度地维持系统的稳定保持供电的连续性,保障人身的安全,防止或减轻设备的损坏。发挥继电保护装置作用的前提是可靠性。继电保护的可靠性一般来说主要是由配置合理、质量和技术性能优良的继电保护装置,以及正常的管理来保证和运行维护。继电保护的基本任务是:自动、迅速、有选择地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行;反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于发出信号,减负荷或跳闸。

二、继电保护的构成与分类

继电保护装置可视为由测量部分、逻辑部分和执行部分等部分组成。测量部分是测量从被保护对象输入的有关电气量,并与已给定的整定值进行比较,根据比较的结果判断保护是否应该启动的部件。逻辑部分是根据测量部分输出量的大小、性质、输出的逻辑状态出现的顺序或它们的组合,使保护装置按一定的布尔逻辑及时序逻辑关系工作,最后确定是否应该使断路器跳闸或发出信号,并将有关命令传给执行部分的部件。执行部分是根据逻辑部分传送的信号,最后完成保护装置所担负的对外操作的任务的部件。常用继电保护的分类方法较多,按被保护对象的类别,继电保护分为线路保护和设备保护等俩种。按保护原理,继电保护可以分为电流保护、电压保护、距离保护、差动保护、纵联保护、方向保护及负序保护。按故障或不正常运行的类型,继电保护可以分为相间短路保护、接地故障保护、匝间短路保护、断线保护、失步保护、失磁保护及过励磁保护等。按继电保护的实现技术,继电保护可分为机电型保护、整流型保护、晶体管型保护、集成电路型保护及微机型保护等。

三、继电保护技术的发展方向

(1)计算机化方向。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力。与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力、高级语言编程等。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益。尚需进行具体深入的研究。(2)网络化方向。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。(3)智能化方向。近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法可迎刃而解。可以预见,人工智能技术在继电保护领域必将得到应用,以解决用常规方法难以解决的问题。(4)保护、控制、测量、数据通信一体化方向。在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据。也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但能完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。(5)自适应控制技术方向。自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。(6)变电站综合自动化技术方向。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能,它表现在集成与资源共享、远控制与信息共享。以远终端单元(RTU)、微机保护装置为核心,将变电站的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电站的占地面积和设备投资,提高二次系统的可靠性。

参考文献

继电保护最新发展方向范文

关键词:电力系统继电保护技术应用发展趋势

一、前言

电力系统的迅速发展对继电保护提出了新的要求,电子技术及通信技术等的迅速发展又为继电保护技术的发展不断地注入了新的活力,随着微机保护装置的应用普及,继电保护二次系统的自动化水平得到不断提高,许多当前由人工处理的模拟信息转化为大量的数字信息,而技术管理人员也有许多用计算机实现的资料和试验记录文档。因此,继电保护技术得天独厚,在余年的发展时间里经历了个历史阶段,现在是微机保护阶段。

二、继电保护技术

继电保护装置是指:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。其基本任务是:当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求。反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。其基本要求是应满足可靠性、选择性、灵敏牲和速动性。这四“性”之间紧密联系,既矛盾又统一。

三、微机继电保护系统特点

研究和实践证明,与传统的继电保护相比较,徽机保护有许多优点,其主要特点如下:

1、改善和提高继电保护的动作特征和性能,动作正确率高。

其主要是在能得到常规保护不易获得的特性;很强的记忆力能够更好地实现故障分量保护;可引进自动控制、新的数学理论和技术如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高也已在运行实践中得到证明。

2、可以方便地扩充其他辅助功能。

例如故障录波、波形分析等,能够方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。

3、工艺结构条件优越。

体现了硬件比较通用,制造容易统一而且标准装置体积小,减少了盘位数量功耗低。

4、可靠性容易提高。

体现了数字元件的特性不容易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。

5、使用灵活方便,人机界面越来越友好。

其维护调试也比较方便,从而缩短了维修时间同时依据运行经验,在现场可通过软件方法改变特性、结构。

6、可以进行远方监控。

其实微机保护装置是具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控的特性。

四、如何保证继电保护的可靠性

继电保护的可靠是由配置合理、质量和技术性能优良的继电保护装置与正常的运行维护和管理来保证,任何电力设备都不允许在无继电保护的状态下运行。微机保护在全国电力系统的普及率已相当高,其可靠性、灵敏度高等优点不言而喻就徽机保护的特殊性而言,还有一些现场问题值得我们注意,这就是要采用有针对性的技术措施把微机保护的误动作限制在最小范围以内以下是笔者近年来工作中体会,供同行参考。

(一)继电保护装置检验应注意的问题

当在继电保护装置检验过程中一定要注意将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作。

〔二)定值区问题

微机保护主要优点是可以有多个定值区,这极大方便了电网运行方式变化和代路情况下的定值更改问题。现在必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明定值编号。

(三)一般性检查

无论哪种保护,一般性检查都是非常重要的,但是在现场也是容易被忽略的项目,至少是没有认真去做。一般性检查大致包括以下几个方面清洁、连接件是否紧固、焊接点是否虚焊、机械特性等。其次是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,也必须将各元件、保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。

(四)接地问题

继电保护工作中接地问题是非常突出的,可以分以下两点说明保护屏的各装置机箱、屏障等的接地,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。电流、电压回路的接地也存在可靠性问题,如接地在端子箱,那么端子箱的接地是否可靠,这些都是严重影响设备安全和人身安全的因素。

(五)工作记录和检查习惯

工作记录一定要认真、详细,真实地反映工作一部分的重要环节,这样的工作记录应该说是一份技术档案,在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。

五、电力系统继电保护技术的发展趋势

电力企业是一个“三密企业资产密集型、技术密集型、人才密集型”,知识管理应该成为电力行业发展的灵魂,继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化等方向发展。随着计算机技术的飞速发展及计算机在电力系统蛛申。保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使徽机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势。

(一)计算机化

紧随着计算机硬件的迅速发展,微机保护硬件也在不断发展电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚需进行具体深入的研究。

(二)网络化

当计算机网络的作为信息和数据通信工具已经成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

(三)智能化

近些年来,人工智能技术例如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

(四)保护、控制、测量、数据通信一体化

在实现继电保护计算机化和网络化的前提下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

(五)变电所综合自动化技术

现代的计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护、故障录波、紧急控制装置和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。随着微机性能价格比的不断提高,现代通信技术的迅速发展,以及标准化规约的陆续推出,变电站综合自动化成了热门话题。竞争的电力市场将促进新的自动化技术的开发和应用,在经济效益的驱动下,变电站将向集成自动化方向发展。根据变电站自动化集成的程度,可将未来的自动化系统分为协调型自动化和集成型自动化。协调型自动化仍然保留间隔内各自独立的控制、保护等装置,各自采集数据并执行相应的输出功能,通过统一的通信网络与站级相连,在站级建立一个统一的计算机系统,进行各个功能的协调。而集成型自动化既在间隔级,又在站级对各个功能进行优化组合,是现代控制技术、计算机技术和通信技术在变电站自动化系统的综合应用所谓集成型自动化系统是将间隔的控制、保护、故障录波、事件记录和运行支持系统的数据处理等功能集成在一个统一的多功能数字装置内,间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现,取消传统的硬线连接。

继电保护最新发展方向范文1篇6

关键词:智能电网;继电保护技术;发展趋势

中图分类号:TM77文献标识码:A

随着我国社会经济的不断发展,社会生产、人类生活的用电需求急剧增大,在这样的环境下加强国家电网的改革,是时展的要求,同时也是电力企业发展的要求。积极构建智能化的电网体系如今已经成为我国电力企业发展的新方向,强调以风能、太阳能等清洁能源为主,并充分结合发达国家电力建设事业的发展路子,结合自身实际,从而构建高压电网来作为网络骨干的新方向。而继电保护装置作为电网中的"卫士",能够有效地将电网故障与系统隔离,从而防止大面积停电现象的发生。因此,我们在国家智能化电网大力发展的同时,需要积极关注继电保护技术的研究,保证电网的安全、可靠运行。

一、智能电网的定义和特点

目前,智能电网的构建尚还处在初级阶段,如何定义,仍是各国学者讨论的焦点问题,由于各国电力发展的规模、环境以及出发点都存在不同,所以对智能电网的理解也都是站在国家的角度。我国对于智能电网的定义是:以特高压电网为骨干网架,各级电网协调发展的坚强电网为基础,利用先进的信息、通信和控制技术,逐渐构建以自动化、计算机化、互动化为主要特征的统一的坚强的智能化电网。它要求系统在出现故障时,能够有效地把故障的影响范围降到最低,并在最短的时间内实现恢复供电。

智能电网具有清洁环保、经济高效、友好互动、坚强可靠等特点,具有强大的电力输送能力和安全可靠的供电能力,能够在保护环境的基础上,有效地降低污染排放和能源的消耗,实现电网的经济高效。此外,智能电网还可以在灵活调整用户接入与退出、兼容各类电源、灵活调整电网运作方式的同时,实现用户、电源、电网三者信息的公开透明与共享,从而做到透明公开和友好互助。如今智能电网的建设虽然处在起步阶段,但是各级电力公司都加快了智能电网的建设步伐,从而使智能电网从一个"概念股"开始向"热点股"转变。我们还需要注意的是,智能电网中的数字化变电站技术、电子式互感器、交直流灵活输电、广域测量技术等都会给电力系统的继电保护技术带来影响,必须加强继电保护技术的研究。

二、智能电网继电保护原理

应用传感器在智能电网中对发电、输电、配电、供电等关键的电气设备的运行状况进行实时监控,然后经过网络系统将采集到的数据进行整合,最后对获取的数据进行分析,以此来实现对电网运行状况的实时监控,从而实现对保护定值和保护功能的动态监控和及时修正。

对于继电保护装置来讲,保护功能除了需要保护对象的运行信息,还需要相关联的其他设备的运行信息。这就需要做好信息的共享工作,保证故障的准确性时,在没有或少量人工敢于的情况下,迅速隔离故障并自行自我恢复,从而避免大面积停电事故的发生,提高电网供电的可靠性和稳定性。因此,智能电网中的继电保护装置在保护动作时不仅仅要跳本保护对象,有时在跳本保护对象的同时,还得发出连跳指令,跳开其他关联点。

三、智能电网中继电保护技术的发展趋势

未来我国继电保护技术的发展,势必朝着网络化,智能化,计算机化,保护、控制、测量和数据通信一体化的方向发展。

(一)继电保护综合自动化的应用

在现代化的网络环境下,继电保护装置可以看作是一个多功能的计算机装置,而在整个网络系统可以说是一个智能终端。继电保护装置在网络环境下,先通过互联网获得电力系统运行以及故障的数据和信息,或者是先接到被保护原件的数据或者信息然后传送给网络控制中心。据此,我们可以看出,网络条件下的继电保护装置能够在电力系统设备无故障运行的情况下,自动地获取测量、控制通信数据,从而实现测量、控制、保护的一体化功能。而目前,实现智能电网继电保护的综合性的自动化系统条件已经齐备,变电站客户机会对保护信息进行搜集以及信息的网络传输,还有调度终端服务器对EMS共享数据的读取、故障分析以及稳定分析的计算等难题,现在通过继电保护综合自动化的应用都已经得到了妥善解决。如今,我们面临的技术问题就是应该如何解决综合继电的调度、运动、保护、通信以及自动化综合变电站的建设等问题,也涉及到如何更好地控制运行的设备,如何做好设备的维护和管理工作。因此,在接下来的工作中,我们只要能妥善解决好管理问题,就能够保证继电保护的自动化技术得到顺利实施。

(二)继电保护技术的智能化应用

继电保护技术的智能化应用目前已经在电力领域的应用研究工作中拉开了序幕。例如遗传算法、神经网络、模糊逻辑等都已在电力系统的各个领域得到应用。神经网络可以有效地解决很难用方程式来表示或者极难求解的非线性问题,可以通过神经网络的非线性映射方式来解决。而以生物神经系统为基础的人工神经网络的进展最为迅速,具有分布式储存信息、自组织等优点。

目前,在电力系统的继电保护中,人工神经网络已经能够实现其方向保护、故障距离判定、故障类型的判断以及主设备保护的功能,例如在输电线的两端系统电势角度摆开情况下发生经过渡电阻的短路,就是一个典型的非线性问题,而通过距离保护的方法很难准确判断出设备故障的原因,给故障的排查带来一定难度,也会造成拒动或者误动现象的发生。但是,假如我们使用了神经网络的方法,通过大量的故障样本的训练,只要样本充分考虑各种情况出现的可能性,就能够准确判别故障发生的地点。同时像进化规划、遗传算法等都具有独特的魅力,能够有效地帮助我们解决复杂的电力系统问题。因此,在电力系统运行中,我们只要能够充分地运用这些人工智能的方法,就可以极大地提高问题的解决速度。

(三)继电保护技术的数字化应用

互感器故障的减少以及互感器传输性能的大幅提高,使继电保护不再需要考虑二次回路断线、电流互感器饱和、二次回路接地等常见的互感器故障问题。同时,电气量气息传输的真实性强化了继电保护装置的性能,为工作效率的提高提供了有力保证。目前如何简化几点保护装置的辅助功能,使用数字传感器来提高继电保护装置的整体性能,是我们未来加强继电保护装置利用效率需要研究的核心问题。

(四)继电保护技术广域化的应用

随着互联电网区域的不断扩大,电网的电压等级也大幅提高,使得供电的不稳定性和出现故障的可能性大大增加。对此,在电网信息化的进程中,我们可以通过广域测量技术WAMS网络提供的广域信息为后被保护服务,以此来提高自动化装置的性能,保证大型电力系统的稳定性和安全性,防治大面积停电事故的发生。

四、不断提高继电保护工作人员的技术和素质

智能电网的继电保护是保证电网运行稳定的首道防线,安全责任重大,因此对工作人员的业务水平要求较高。近几年,我国电力行业普遍开展继电保护专业知识和技能的竞赛活动,以此来促使工作人员迅速适应国家电网快速发展的要求,加快"两个转变"的推进力度,强化人才强企的战略,这对于进一步提高继电保护工作人员的岗位技能和技术水平都具有重要意义。

随着各级电力公司继电保护岗位人员队伍的不断壮大,加强对新进员工的岗前培训工作显得愈发重要。供电企业的在初进人员上岗之前,一定要对其进行岗前培训与考核,考核合格后持上岗证上岗。此外,还应积极开展技术培训和技术竞赛,通过培训和竞赛,使继电保护工作人员能够较为全面地掌握继电保护工作的专业知识,增强其实践技能,为今后的工作顺利开展打下坚实的基础。同时,各级供电企业还应始终加快推进"两个转变",积极实施人才强企战略,以人才发展来实现企业发展,以人才进步来推动继电保护技术的进步。

结语

近年来,我国在不断加快智能化电网的建设步伐,对其保护装置的可靠性和动作反应速度也提出了更高的标准,对保护装置的配合、装置也提出了更高的要求,对保护装置的功能的发展提出了更远大的目标。相信随着智能化电网的快速发展以及继电保护技术的不断进步,势必会对保护定值的自适应和保护功能做出更合理的调整。总之,我国的继电保护技术会继续朝着网络化、计算机化、保护、测量、控制、数据通信一体化、智能化的方向发展。广大电力系统的工作者也将不断总结经验,加强专业建设工作,继续努力提升继电保护工作的高度,从而确保电力系统运行的安全性、稳定性和可靠性。

参考文献

[1]王向东,吴立志.浅析智能电网框架下的继电保护技术[J].机电信息,2011(18).

继电保护最新发展方向范文篇7

关键词:电力系统继电保护发展趋势

中图分类号:F470.6文献标识码:A文章编号:

正文:

一、电力系统继电保护概述

1.电力系统继电保护的基本原理 

电力系统的继电保护装置就是指电力系统运行过程中电气元件在发生故障时能及时发出信号,并使断路器跳闸产生动作的一种自动装置。为了完成对电力系统相关装置的安全保护任务,电力系统的继电保护装置通过借助正确区分的保护元件来检测被保护的装置是否处于正常的工作状态。也就是说,继电保护装置一般是根据电力系统发生故障前后电气物理量变化的特征为基础来对被保护的装置进行保护的。其中,用于继电保护状态判别的故障量随所处电力系统的周围条件而异,也随被保护对象的不同而不同。当前应用最为广泛的故障量是工频电气量。工频电气量指的是通过电力元件的电流和所在母线的电压以及由这些量演绎出来的其他量,如功率、相序量、阻抗等,从而构成电流保护、电压保护、阻抗保护、频率保护等。

2.电力系统继电保护装置的作用

电力系统的日常运行中较常见的故障主要有断线、短路、接地、负荷过载以及振荡等。上述故障如果处理不及时或处理不当往往会引发大范围的电力系统事故,从而导致电力系统的全部或部分的正常运行状态遭到破坏,导致电能质量破坏和设备损坏,损失非常巨大。一般对上述故障的有效处理措施就是采取相关有效措施迅速地将正常运行的系统与故障部分隔离,从而将故障造成的影响和损失尽量减少。为保证电力系统的安全稳定运行,有效避免事故的扩大。通常,依靠人的判断和处理是来不及的,在系统发生故障时务须由相关的继电保护装置完成电力系统故障的安全保护。3.电力系统继电保护装置的任务一般而言,电力系统继电保护装置的任务有:一是值班管理人员可以通过继电保护装置及时掌握处于不正常运行状态的电气元件的反应,以便能够及时处理,从而有效避免相关电气设备的损坏以及安全事故的发生;二是继电保护装置自身能够迅速地将电力系统中的故障元件有选择地进行切除,从而确保其他无故障原件的正常运行。

二、继电保护的基本要求

继电保护是电力系统的一个重要组成部分,担负着监督系统运行状况和及时处理系统故障的重要职责,是保证电力系统安全运行的重要设备。选择性、可靠性、速动性、灵敏性是对它的四项基本要求。

选择性是指当电力系统中线路或设备发生短路故障时,负责本段线路的继电保护装置会动作,此时其他线路的继电保护装置不动作,而当其拒动时,相邻设备或线路的保护装置会作为后背保护将故障切除。

速动性是指电力系统发生故障时,继电保护装置应能够快速地将故障切除,将故障可能对人和设备造成的损害降低到最小程度,提高系统并列运行的稳定性。

灵敏性是指当电力系统中线路或设备发生短路故障时,继电保护装置的及时反应动作能力。在规定范围内发生故障时,不论故障点的故障的类型和位置如何,以及故障点是否存有过渡电阻,能够满足灵敏性的要求的继电保护都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。可靠性是指继电保护设备能够安全稳定的工作动作,不发生在故障时拒动或无故障时误动的情况。

三、继电保护的发展趋势

在未来智能电网中,电网的自愈特征将会对继电保护的选择性、可靠性、速动性、灵敏性提出更高的要求,对常规继电保护的配置方法提出新的要求,常规保护在这几个方面根据实际情况的不同会有所侧重。如在特高压电网的建设、电网规模的扩大等因素,将导致短路电流增大很多,因此,短路电流增大造成的定值可靠性降低。然而,挑战往往是与机遇并存的,智能电网的发展从另一个角度也将给继电保护的发展带来新的契机。根据智能电网发展的特点与趋势,可以预计它将会在以下几方面推动继电保护技术的发展:

3.1信息数字化信息的数字化

包括两个方面,一是测量手段的数字化,新型的继电保护装置将广泛采用电子式互感器和数字接口;二是信息传输方式的数字化,传统继电保护设备采用的模拟量电缆传输和状态量电缆传输方式将被淘汰,取而代之的是以光纤为媒介的网络数字传输方式。随着智能电网的建设及智能化设备的广泛使用,传统的互感器将逐步退出运行。而且电子式互感器采用网络接口,通过网络保护装置和智能断路器连接,大大简化了二次回路接线,使之易于维护。

3.2通信网络化

电力系统继电保护与计算机网络相结合是现代电力系统实现稳定安全可靠运行的重要的保证。通信网络化使每个保护单元都能够实现共享全部故障信息与系统运行的数据,并且使各个保护单元之间与自动重合闸装置能够在分析这些数据信息的基础之上做出协调的动作。这样就在各个保护单元之间形成了一个互联网,增加了保护单元之间的联系,最终实现微机继电保护装置的网络化。

3.3动作智能化

智能电网要求继电保护装置能够利用全网信息准确、实时地判断运行方式并且调整定值,实现真正意义上的在线整定。近年来人工智能技术在电力系统的各个领域都得到了广泛的应用,使得电力系统继电保护技术的研究迈进了更高层次,逐渐向着微机化的趋势不断发展。例如利用神经网络的方法,经过大量的故障样本训练,只要充分考虑了现场各种情况,则发生任何的故障时都能够作出确判别,最终做出正确动作。

3.4综合自动化

计算机技术、通信技术和网络技术高速发展,使得微机继电保护装置具有了可以从网上获得电力系统运行状态与各种故障的数据信息的能力,并且微机继电保护装置也可以将它从网上获得的电力系统被保护元件的数据与信息传送给网络控制中心和其他的保护单元,及时在继电保护系统中完成继电保护的各项功能,如监视、测量、控制、保护、数据通信等。从而实现了测量、控制、保护、数据通信等各方面的综合自动化。

3.4.数字化技术的应用

随着社会经济的不断发展和科学技术的革新,数字化技术在电力系统继电保护领域的应用越来越广,数字化变电站的建设已经成为电网建设的主流。数字化变电站是指变电站的信息采集、传输、处理、输出过程全部数字化。数字化继电保护装置原理是利用电子互感器采集数据,数据在互感器内通过光纤利用光数字信号将数据传到低压端,在MU(合并单元)处理后得出符合标准的数字量输出。其涵盖了变电站的全部范围,比如一次设备的互感器、断路器、变压器,二次设备中的保护、控制、通信,以及软件开发、系统建模、数据应用等。数字化技术的应用:一是智能化继电保护测试仪。随着智能化变电站的投入和普及,数字化测试设备在电力用户和制造厂中的需求呈上升趋势。二是全数字化变电站的动态仿真系统。智能电网推广的重要举措就是建设具有数字化、信息化、自动化、互动化特点的数字化变电站,然而目前大多数变电站无法有效检测继电保护二次设备的性能,只有全数字化变电站才能实现设备检查和监测功能。

3.5继电保护输电技术的突破

随着电力电子技术的发展、直流输电技术日益成熟,多种新的发电方式所产生的电能都要以直流方式输送,比如磁流体发电、电气体发电、燃料电池和太阳能电池等,直流输电在电力系统中必然得到更多的应用。另外,超高压输电可以增加输送容量和传输距离,降低单位功率电力传输的工程造价,减少线路损耗,节省线路走廊占地面积,具有显著的综合经济效益和社会效益。

4结束语

继电保护的技术微机化化绝不仅仅只有这几个方面,很多都要随着智能电网的发展才会慢慢体现出来。智能电网的建设是电力系统的一次重要变革,是电网未来的发展方向。目前,智能电网的建设已经初显成效,建设过程中新技术和新设备的应用已经给继电保护专业领域带来了革命性的变化,例如我国220kV以上的输电线路已经全部实现了继电保护技术的微机化。随着智能电网建设的推进,相关研究的深入,继电保护专业一定会适应电网需求向智能化方向发展,跟进电网建设步伐,为智能电网建设提供技术支持。

参考文献

[1]王梅义.高压电网继电保护技术[M].北京:电力工业出版社,1981.

[2]葛耀中.数字计算机在继电保护中的应用[J].继电器,1978.

[3]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.

继电保护最新发展方向范文篇8

关键词:电力系统;继电保护;发展趋势

1引言

电力系统继电保护是保证电力系统安全运行、提高经济效益的有效技术。计算机控制技术成功运用到电力系统继电保护中,使得未来继电保护技术发展趋势具有计算机化、网络化、智能化等特点。

我国继电保护学科、技术、继电器制造和人才队伍培养从无到有,在小活吸收国外先进继电保护设备和运行技术的基础上,建成了一支具有深厚理论功底和丰富运行经验的继电保护队伍。经过60年的发展和探索,我国已经建成了继电保护研究、设计、加工制造、运行维护和教学的完整体系。

2我国继电保护的发展现状

上世纪60年代到80年代是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kv晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kv线路上,结束了500kv线路保护完全依靠从国外进口的时代。在20世纪70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产和应用仍处于主导地位,这是集成电路保护时代。我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。从90年代开始我国继电保护技术已进入了微机保护的时代。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

3电力系统继电保护发展趋势

3.1计算机化

按照著名的摩尔定律,芯片上的集成度每隔18—24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与dsp芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。

我国在2000年220kv及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kv以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2—0.3个百分点。

继电保护装置的计算机化是不可逆转的发展趋势。电力系统对微机保护的要求不断提高,除了保护基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信功能,与其他保护、控制装置和调度联网以供享全系统数据、信息和网络资源的能力、高级语言编程等。

3.2网络化

网络保护是计算机技术、通信技术、网络技术和微机保护相结合的产物,通过计算机网络来实现各种保护功能,如线路保护、变压器保护、母线保护等。网络保护的最大好处是数据共享,可实现本来由高频保护、光纤保护才能实现的纵联保护。另外,由于分站保护系统采集了该站所有断路器的电流量、母线电压量,所以很容易就可实现母线保护,而不需要另外的母线保护装置。

电力系统网络型继电保护是一种新型的继电保护,是微机保护技术发展的必然趋势。它建立在计算机技术、网络技术、通信技术以及微机保护技术发展的基础上。网络保护系统中网省级、省市级和市级主干网络拓扑结构,以及分站系统拓扑结构均可采用简单、可靠的总线结构、星形结构、环形结构等。分站保护系统在整个网络保护系统中是最重要的一个环节。分站保护系统有2种模式:一是利用现有微机保护;另一个是组建新系统,各种保护功能完全由分站系统保护管理机实现。由于继电保护在电网中的重要性,必须采取有针对性的网络安全控制策略,以确保网络保护系统的安全。

3.3智能化

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法不断被应用于计算机继电保护中,近年来人工智能技术如专家系统、人工神经网络、遗传算法、模糊逻辑、小波理论等在电力系统各个领域都得到了应用,从而使继电保护的研究向更高的层次发展,出现了引人注目的新趋势。例如电力系统继电保护领域内出现了用人工神经网络(ann)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着人工智能技术的不断发展,新的方法也在不断涌现,在电力系统继电保护中的应用范围也在不断扩大,为继电保护的发展注人了新的活力。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。虽然上述智能方法在电力系统继电保护中应用取得了一些成果,但这些理论本身还不是很成熟,需要进一步完善。随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3.4综合自动化

现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。实现继电保护和综合自动化的紧密结合,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(rtu)、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。

综合自动化系统打破了传统二次系统各专业界限和设备划分原则,改变了常规保护装置不能与调度(控制)中心通信的缺陷,给变电所自动化赋予了更新的含义和内容,代表了变电所自动化技术发展的一种潮流。随着科学技术的发展,功能更全、智能化水平更高、系统更完善的超高压变电所综合自动化系统,必将在中国电网建设中不断涌现,把电网的安全、稳定和经济运行提高到一个新的水平。

4结语

随着电力系统的高速发展和计算机技术、网络技术和人工智能技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到综合自动化水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献

[1]许建安.电力系统继电保护[m].北京:中国水力电力出版社,2005.

[2]张宇辉.电力系统微型计算机继电保护[m].北京:中国电力出版社,2000.

[3]陈向东.电力系统网络型继电保护模式探讨[j].电力信息化,2009,7(1):38-40.

继电保护最新发展方向范文篇9

关键词:智能电网;智能变电站;继电保护

随着科学技术的不断发展,行业创新层出不穷。在此背景下,国家电网公司也开拓创新,大力发展建设智能电网。在智能电网的建设中,变电站是电网建设的关键环节,要顺应智能化的发展趋势,使智能变电站成为建设的重心,而智能变电站最终实现高效运作,离不开配套的继电保护装置[1]。文章讨论了智能变电站继电保护中的关键问题,并就如何提高继电保护的可靠性提供了一些建议。

1智能变电站概述

智能变电站是指使用数字化智能设备的新型变电站,其配套的智能化装置可自动收集、监视和控制电网信息,并操控电网,从而使电网系统能够实现智能调节[2]。智能变电站的结构如图1所示。智能变电站是变电站的最终发展模式,采用了智能终端柜和合并单元的模式,使保护就地化,具有保护可靠性高、智能化程度高、维护工作量少的优点[3]。针对智能变电站这一综合、复杂、智能化的新生事物,运行人员需要认真学习智能站的运维细则,刻苦钻研智能站的信息流图,吃透其原理和内部逻辑,成为一个合格的智能变电站运维人员。

2智能变电站继电保护的要点

2.1可靠性

继电保护的可靠性主要包括以下两个方面:(1)保护的选择性。当智能变电站发生保护区域内故障时,应及时采取保护措施。(2)保护的可靠性。在电力系统正常运行时,保护装置应避免误动或异动[4]。随着整个电力系统的自动化和数字化,电子信息技术正逐渐成为智能变电站的核心。鉴于此,信息电子设备必须被正确应用在继电保护中。许多因素会影响电子设备的稳定性,如设备电池的兼容性和设备的使用频率,这些都会影响继电保护的可靠性。为确保智能变电站继电保护的高可靠性,必须使用高稳定性的光缆,并采取措施减少来自电子设备频率的干扰。因此,有必要研发更先进的电子信息技术,并将其应用于智能变电站的继电保护系统自检,确保能及时响应系统的错误告警,采取预控措施。电网故障诊断的流程如图2所示。此外,应建立数学模型以定量分析继电保护的可靠性[5]。

2.2实时性

实时性是电力系统智能变电站继电保护的重要性能指标[6]。在数字采样的过程中,数字采集器可能在某些因素的影响下产生时间误差,在传输过程中发生严重的数据丢失。基于以上原因,在电力系统的采样过程中,采样方法应科学可行,应预估产生错误的可能性,再实施采样。在实际操作的过程中,应并行计算采样结果,以尽量减小采样结果的误差和减少延迟,从而全面提高继电保护的实时性。

2.3同步性

在传统变电站中,变压器等电力设备的使用不需要通过时间函数同步,因此传统电力系统缺乏同步保护[7]。智能变电站的信息采集依赖数字化的方法,因此继电保护需要同步。有以下两种方法可以提高智能变电站继电保护的同步性:(1)将同步检测装置和差动保护装置用于线路保护,由于同一条线路的本侧和对侧的同步装置收集的是来自不同变电站的信号幅值和相位,因此最重要的是要确保整个系统的保护同步和正确执行;(2)电力系统实施过流和过压保护,这两个保护功能很容易实现,只需在继电保护系统中输入正确的定值,保护功能实现期间不需要同步过程。

3提高智能变电站继电保护可靠性的策略

3.1加强对变压器的保护

在电力系统中,电力设备的额定电压是固定的。当系统电压高于或低于额定值时,将对系统和设备产生不良的影响。电力系统中最重要的调压装置是变压器,它也是继电保护中的重要装置。因此,将数字式电压互感器装置用于智能变电站继电保护系统时,变压器可采用分布式配置方式,以充分利用继电保护中的差动功能。此外,智能变电站可通过集中配置变压器装置实现后备保护,以加强智能变电站继电保护的可靠性。

3.2保护电压延时元件

智能变电站在日常运行中很容易受到外部因素的影响,如电流、电压因素等,任何异常状态都可能导致不必要的跳闸或电流过载问题。虽然过载电流与正常电流没有明显区别,但是,在电流过载的情况下,如果智能变电站同时发生外部干扰的故障,跳闸的可能性会很大,这将严重威胁智能变电站继电保护的动作可靠性。为此,在智能变电站的系统电路中采用电压限制延迟动作元件时,需要通过计算每条电路的电流量准确计算总电流量,如果系统中出现过载电流问题,系统就可以立即发出告警信息,所有相关分支系统会实时激活保护命令,从而显著提高继电保护的可靠性。

3.3加强线路保护

在电力系统中,线路的保护极为重要,线路保护不仅可以有效保护各级电压中的单元间隔,切除站外的故障,而且在电力系统的控制、测量、通信监控等功能实现中起着重要作用。在继电保护中实施正确可靠的线路保护配置工作,可以显著提高整个系统继电保护的可靠性。因此,技术人员应做好线路保护的正确、有效配置。可以采用垂直差动联动保护方式,这种保护方式灵敏、可靠,基本可以使所有的系统线路得到有效保护。垂直差动联动的原理如图3所示。当线路正常运行的时候,线路电流I1、I2的大小相同、方向相同,差动电流为零;当线路上发生接地故障时,I1、I2的方向发生变化,差动电流达到保护启动值。在线路保护中,差动保护动作主要有主保护和后备保护两种保护方式。在两者有效结合的情况下,如果线路中任何一个保护出现问题,配置的另一个保护都能及时动作、切除故障,从而提高电力系统的可靠性。

3.4完善线路保护机制

目前,智能变电站继电保护的主要方法是加强双重保护配置。对于后备保护,可以采用集中配置实现调节,以避免交换机故障。同时,在线路保护相邻区间和整个系统中应用双向总线,可以便于利用后备保护反馈保护信息,通过后备保护可以判断整个电网的运行情况,并对问题进行预处理,从而防止事故发生。此外,技术人员还应制订合理的策略解决线路跳闸问题[8]。在目前的保护机制下,应努力寻找更多更完善、合理的技术,以实现智能变电站的技术调整。同时,需要根据电网的整体运行情况,科学有效地分析变电站内的设备运行方式,以确保运行计划科学合理,从而进一步提高智能变电站继电保护的可靠性水平。

4继电保护案例分析

4.1案例概况

2022年4月19日,某换流站极2的最后断路器保护动作闭锁。最后断路器一般用于换流变交流进线,最后断路器跳开前需要闭锁直流,以防对设备造成损坏,断路器保护以最后一个开关的辅助接点跳开作为检测判据。故障前,双极为全压600MW平衡运行,故障后,极2功率转移至极1,未造成功率损失。闭锁前,该站极2换流变仅带5041边开关运行,5042中开关正在进行某Ⅱ线扩建后的保护定检。经分析,故障原因为该站最后断路器保护存在软件缺陷,软件以跳开关的命令作为保护判据,而正确的逻辑应以开关的辅助接点作为判据。现场人员在校验时发现,开关失灵保护时发出了跳边开关的命令,而之前的安全措施已将失灵保护跳边开关的压板退出,因此边开关虽没有跳闸,但由于误采用了跳开关命令作为判据,导致了最后断路器保护误动作。

4.2电力条例

此案例涉及的相关电力条例如下。(1)最后断路器保护设计应可靠,应避免仅以断路器辅助接点位置作为最后断路器跳闸的判断依据,防止接点误动导致直流双极强迫停运。(2)新建、扩建或改建工程的继电保护和安全自动装置应零缺陷投入运行;在新建、扩建或改建工程中,继电保护和安全自动装置缺陷处理记录等资料在投运前应移交运维检修单位,由运维检修单位负责统计存档;对于工程质保期内发生的继电保护和安全自动装置缺陷,由建设单位负责处理,运维检修单位配合。(3)在设计保护程序时,应避免使用断路器和隔离开关辅助触点位置状态量作为选择计算方法和定值的判据,应使用能反映运行方式特征,且不易受外界影响的模拟量作为判据。若必须采用断路器和隔离开关辅助触点作为判据,断路器和隔离开关应配置足够数量的辅助触点,以确保每套控制保护系统采用独立的辅助触点。

4.3应对措施

此案例事故的应对措施如下。(1)继电保护检验人员应了解有关设备的技术性能及调试结果,并认真检验自保护屏柜引至断路器(包括隔离开关)二次回路端子排处的电缆线的连接的正确性及螺钉压接的可靠性。(2)对保护装置进行计划性检验前,应编制保护装置标准化作业书;检验期间,应认真执行继电保护标准化作业书,不应为赶工期而减少检验项目和简化安全措施。(3)对运行中的保护装置外部回路接线或内部逻辑进行改动工作后,应做相应的试验,确认接线及逻辑回路正确后才能投入运行。(4)对于试运行的新型保护装置,应进行全面的检查、试验,并由电网公司继电保护运行管理部门进行审查。(5)在现场进行检验工作前,应认真了解被检验保护装置的一次设备情况,相邻的一、二次设备情况,与运行设备关联部分的详细情况等,并据此制订检验工作计划。在检验工作的全过程中都要确保系统的安全运行。

5结束语

智能变电站继电保护的要点包括继电保护的可靠性、实时性和同步性。继电保护的可靠性关系到整个智能变电站和电力系统的安全稳定运行。因此,电力企业应重点关注智能变电站的特殊保护需求,不断加强变压器保护、电压限延时、线路保护机制等,以有效提高继电保护的可靠性,推动智能变电站和电力系统的发展,最终实现电网的持续、稳定、健康发展。

参考文献:

[1]蔡志峰.电力系统中电气主设备继电保护技术研究[J].光源与照明,2022(6):81-82.

[2]雍明月,张秉楠,高尚,等.变电站在线监测智能电子设备自动化测试研究[J].工程技术研究,2022,5(21):115-116.

[3]陈宇翔.智能变电站保护系统可靠性研究[D].广州:广东工业大学,2022.

[4]邬小坤,赵武智,牛静,等.一种智能变电站二次设备状态评价方法[J].电子器件,2022,44(3):664-669.

[5]刘元生,王胜,白云鹏,等.面向智能变电站的威胁与风险评价模型研究与实现[J].重庆大学学报,2022,44(7):64-74.

[6]李辉,张孝军,潘华,等.面向智能变电站通信网络可靠性研究[J].电力系统保护与控制,2022,49(9):165-171.

[7]朱寰,刘国静,李琥,等.“新基建”下变电站资源综合利用发展研究[J].电网与清洁能源,2022,37(3):54-64.

继电保护最新发展方向范文篇10

关键词:继电保护,故障信息系统,结构组成,实现方式,管理功能,发展前景

前言

随着信息社会的到来及电力行业全面走向市场,好多电力企业都对电力系统多方面进行开发和研究,电力系统数据通信网获得了前所未有的快速建设和发展,数据通信网的规模和容量大大增强;这些有利条件终于促使了电力保护系统的信息化水平,实现快速有效地处理电网故障、恢复系统正常运行。继电保护故障信息系统的任务是收集管理电网异常时动作的装置的动作信号、断路器的分合信号以及装置的运行异常信号,对这些数据、信号的综合、统计、计算和分析等处理与管理,并通过对变电站故障信息的综合分析、故障定位和整定计算工作提供科学依据,以做出正确的分析和决策来保证电网的稳定运行。从而为继保人员对保护、安全自动装置运行管理提供必要的支持,实现了继电保护运行管理的网络信息化和自动智能化功能,具有很强的社会和经济效益。

一、继电保护系统简介

继电保护是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。继电保护为了具有正确区分被保护元件是处于正常运行状态还是发生了故障这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大因此可以利用短路故障时电气量的变化,便可构成各种原理的继电保护系统。

二、继电保护故障信息系统分析

继电保护故障信息系统是一种通过数据通信方式传送保护及故障录波器信息来对继电保护故障信息系统传送数据通信和信号处理的安全自动保护系统,它能更好的分析运行异常信号,在这几年的电力系统继电保护中得到广泛应用。

继电保护故障信息系统主要由主站、分站及若干个子站构成。分站分别直接与本地区子站通信,并接收全部数据;主站直接与全部子站通信,并接收所有子站数据;主站与分站之间相互独立,没有信息往来。通常根据通信网络情况,220kV及以上子站与主站间通过调度数据网络连接,形成了基于光纤+SDH+IP技术的信息传输网络;110kV子站与主站、分站通过电力通信骨干网连接。

继电保护故障信息系统能快速有效地处理电网故障和恢复正常运转,使电力系统的数据通信网的规模和容量大大增强,提高继电保护安全运行的网络信息化水平和自动智能化水平。

三、继电保护故障信息系统结构运行原理

3.1子站运行原理

继电保护故障信息系统子站的功能是实现保护装置、故障录波器和变电站其它自动装置接入、信息采集、处理、存储、传输或数据服务等。它主要负责与保护、故障录波器等设备通信,收集这些装置的正常运行、异常告警及故障信息等采集功能。运行方式是主要是通过数字式故障录波器记录电网故障前后的模拟量和开关量数据,以及记录高频保护通道的直流量和开关量数据,在数据网络连接方式下提供虚电路的主站和子站之间,采用103协议标准中的扰动数据通信格式,保护工程师站负责收集转换成COMTRADE格式文件,这样做更符合保护装置使用的103扰动数据通信接口标准的要求,也能很好的满足子站的故障录波数据存储和数据分析交换时的复制要求。

3.2主站的运行原理

继电保护故障信息系统主站的功能是通过与子站通信收集IED设备的动作、故障、自检、录波、正常运行及扰动数据等信息,采用GIS定位方式,让所有的定位均可以从地理图上来完成,包括对录波文件或保护设备扰动数据的分析以及对保护设备动作情况的分析等,然后将主站内保护装置接入子站,优先选用网口通信,这样能满足向主站主动传送及调用故障信息的要求,能够满足按用户需要设定不同类型数据,采用不同优先级有序传送的要求,最大限度地将故障信息系统的主站、子站系统间的通信协议协调一致,与FTP文件传输协议有机地结合起来,从而简化了子站系统中的继电保护装置的数据转送给故障信息系统主站的处理。

四、继电保护故障信息系统发展前景

由于继电保护故障信息系统是基于网络的系统,各种安全防护技术还没有在电力二次系统中进入完全实用化的阶段,行之有效的安全性防护措施将会是以后这个系统发展的方向。

目前国内继电保护超高压变电站普遍采用的分层分布式的体系结构为故障信息系统,使得继电保护更加自动化和智能化。因此信息共享也将会是继电保护系统发展的一个方向,从而可以提供了一个极其开放的平台。

故障信息系统主站、分站、子站之间的信息传输的可靠性更是今后继电保护系统发展的另一个方向,采用可靠性高、速度快的网络方式来代替通过拨号进行信息传输的方式已成为大势所趋。

六、结束语

随着社会经济的快速发展和人民生活水平的不断提高,继电保护故障信息系统建设规模不断扩大,运行经验也不断积累,完全可以掌握全网继电保护的运行信息,对事故进行及时分析和处理,从根本上使继电保护的管理进入一个新的层次。但同时为了使故障信息系统能够更好地为电力系统的安全、稳定运行服务,系统的发展应及时跟踪国际最新的技术发展动向和应用情况,迅速制定相关的标准,出台相应的指导性和规范性文件;其次随着系统功能结构的标准化和开放程度的提高,系统安全问题会变得非常突出,必须给予足够的重视;最后尽快实现通信规约的通用化、标准化和通信结构的网络化。只有这样,才能大大提高调度部门信息和故障综合分析处理能力,实现继电保护装置运行管理的信息化、网络化和自动化,使电力行业继电保护的自动化水平迈上一个新的台阶。

参考文献

【1】电力行业标准DL/T667-1999idtIEC60870-5-103:1997.

【2】继电保护及故障录波器信息处理系统技术规范,2002.

【3】何菁;YS-3000故障信息管理系统的应用[J].电力自动化设备;2001年08期

【4】刘志超,黄俊,承文新;电网继电保护及故障信息管理系统的实现[J].电力系统自动化;2003年01期

继电保护最新发展方向范文篇11

关键词:农网;继电保护;整定计算;管理;安全运行

0前言

随着农电负荷的不断增长,农网改造力度的不断加大,农网网架结构日趋复杂,相应的保护配置、继电保护的动态管理技术不相匹配,使得农网继电保护整定计算中问题(选择性、灵敏性、可靠性)日趋矛盾。做好农村电网继电保护整定计算工作,对已安装的各种继电保护按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使各种继电保护有机协调地部署及正确的发挥作用,是保证电网安全运行的重要环节。

1继电保护整定计算的特点与要求

继电保护整定计算丁作是继电保护系统的重要组成部分。它要求从事该工作的人员既要有强烈的责任心,又要有扎实的电力系统基础知识和继电保护系统理论知识并熟悉微机型继电保护装置的硬件、软件。

由于继电保护整定计算工作不能独立于继电保护之外,所以整定计算也必须满足“四性”的要求。即“可靠性”、“选择性”、“快速性”、和“灵敏性”。这“四性”既相辅相成、相互统一,又相互制约、互相矛盾。继电保护整定计算在完成“四性”的要求时,必须统筹考虑,不能片面强调一项而忽视另一项,以致“顾此失彼”。

2继电保护整定计算人员问题及改进措施

整定计算是继电保护工作中的重要一环,电力系统的安全和可靠在很大程度上取决于继电保护和安全自动装置的安全和可靠。而人员是完成继电保护整定工作的主体,整定人员的水平、经验、工作态度甚至当时的精神状态都将影响整定工作完成的效果。

2.1整定计算人员问题

(1)部分县级供电公司无专职的继电保护整定人员,以至人员变动频繁,整定计算人员水平参差不齐,不能保证继电保护整定工作的整体水平持续性提高。改进措施:如果确实无法配备专职整定计算人员,可设多名兼职人员,确保计算、审核的顺利开展。即使一名兼职人员因公出差,也不会影响定值单及时下发。

(2)不同的整定人员按规程进行整定计算,在此过程中由于选择的整定方案、整定原则的不同,可能造成整定结果的差异,对具体保护装置内控制字、压板等理解不一致。例如,控制字中复压闭锁方向应如何取舍;TA断线闭锁差动是否投入;线路重合闸时间如何确定;35kV联络线是否需要投两端保护;主变后备保护中限时速断电流保护是否投入;计算中可靠系数、返回系数取值是否统一;主变定值与线路时限的匹配原则及不匹配时如何取舍等问题。改进措施:由地调组织编写制定农网继电保护整定规则,针对不同厂家的保护装置做具体说明,为以后的保护整定人员提供学习参考和整定、核查依据。

(3)继电保护整定人员参加系统培训机会不多,各级整定人员之间进行集中学习,相互交流探讨的力度不够。

2.2改进措施

各县级调度单位应结合其人员调整及其岗位适应性要求安排专(兼)职保护整定人员,将人员信息、联系方式上报地调。借地调开展各县保护定值核查机会,安排人员到地调进行培训学习,让县公司继保整定人员熟练掌握二次回路、保护装置的原理及功能、整定原则及运行注意事项,提高其业务水平。平时工作中,各单位结合实际坚持开展动态培训工作,有计划地为继电保护人员创造更多外部培训及现场培训的机会,特别是有新型保护装置入网时,应组织本单位继保人员进行充分的专项技术研讨,为今后保护整定工作打下坚实基础。

3整定计算基础资料管理问题

(1)二次设备建档工作不能及时更新,缺、漏、错现象普遍存在。如新建项目部分设计修改无设计更改通知单,改扩建项目竣工资料不齐全,所存图纸及说明书等资料不是当前有效版本;各县公司二次竣工图册缺失问题严重,跳闸出口整定工作无法进行,影响保护整定及核查工作开展进行;对县公司上报保护核查资料是否准确,是否到现场进行过核对,地调保护专业人员无从监督;二次设备建档工作不系统、不细致的关键问题是由于管理方面无相应考核措施,特别是对工程项目竣工移交资料环节的管理缺乏有效监管。

改进措施:制定相应的整定计算资料的上报与规范及考核制度。明确各单位继保方面有关人员(如工程管理部门、施工单位、设计单位、调度部门等)的分工,对不按要求承担相应建档责任的进行考核,同时应重视对工程的前期管理,及时向施工部门强调应交资料及考核方式,以避免后期被动地催补资料。

(2)没有建立完善的设备缺陷归档管理机制。在保护装置验收及保护专项检查中,会发现不少保护装置或次回路本身固有的缺陷,如装置显示的跳闸矩阵控制字与现场试验结果不一致、个别回路功能不正常或甚至没有接线等,只是简单地向有关人员口头传达,而没有形成书面材料存档,没有建立完善的设备缺陷归档管理机制。

改进措施:利用各种专项检查工作机会,派人员现场核实校对所有保护装置定值单;将检查中发现的问题或缺陷形成书面材料,以方便调度运行、整定人员查阅。如果继保人员变动频繁,这种特殊的资料的整理显得更加重要。

(3)由于保护装置的更新换代,版本升级速度不断加快,累积的旧保护装置版本越来越多,而新型保护装置类型层出不穷,继保人员在保护功能调试或整定计算工作中容易受习惯性思维约束。例如有些110kV线路保护一般仅有TV断线过电流保护功能,国电南自PSi21C、北京四方CSL-162C线路保护除了Tv断线过电流保护外,还单独设置有过电流保护,整定计算人员如果忽略这小小的功能变动而误整定,则可能造成过负荷跳闸或故障时越级跳闸的严重后果。

改进措施:微机保护装置版本的每一次升级必须经生产技术部门核准,并报整定计算部门备案,同时提供软件框图和有效软件版本说明及程序版本号。整定计算人员向现场保护专业人员多学习,更深入的了解保护装置。并且必须拿到现场打印出的微机保护定值清单,以及相应的技术说明书后,才能进行整定计算。若有不符之处,应立即联系厂家,了解并确认改动项目后,依照装置实际情况计算并下发正式保护定值通知单。

(4)新建、改扩建工程中,项目负责人或工程管理部门未按有关要求及时向整定计算部门提供有关资料的现象时有发生,有时甚至在投运前两天才提供,或者相关资料错误而临时重新提供,造成定值计算时问太仓促,导致整定计算考虑不周的机率变大,同时也影响了定值单的正常发放工作,这极易埋下事故隐患,危及电网安全稳定运行。保护定值管理已有相应的技术及运行管理规定,但作为专业规定,缺少对相关各部门的监督和约束力,特别是基建与设备运行管理部门从属不同单位时,可操作性差,无法保障定值管理的连续性、严肃性。

改进措施:由地调整定计算部门列出所需资料清单,由工程管理部门在开工前转交施工单位,凡因资料提供不及时影响整定计算工作的由有关部门加大考核力度。针对现状制定出符合实际生产流程的相关规定,作为监督、协调各部门参与定值使用及管理工作的依据。设计、基建、技改主管部门应及时、准确地向调度中心提供有关计算参数(保护类型、投运范围等)、生产管理部门应建立设备(如线路、主变等)为单位的详细的档案。结合农网保护整定实际相关工作制定继电保护定值管理工作流程,使继电保护定值管理工作不再是孤立的、个别人参与的专业项目。

4农网存在的问题及解决办法

4.1选择性差

(1)农网因串级级数多,按常规后备保护时间逐级配合,越靠近电源的保护时限越长。若尽量保系统,从上级向下级逐次配合,在线路末端出现0s保护动作时间,使用户保护无法配合。在保护灵敏度满足的前提下,可适当在某一级退出后备段,以节省系统时间级差,或采用重合闸补救方法。

(2)对于保护配置为两段式的保护,选择性更差,所以保护配置最好为三段式保护,特别是靠近电源侧保护为三段式保护最优。

(3)农电变电所主变一般按2台配置,由于负荷波动大,2台主变在负荷高峰期低压侧并运,负荷低谷期分运或单运,导致运行方式变化很大。线路变压器组接线的线路保护过流二段要保证选择性按在最大运行方式下躲主变低压侧(并运)故障整定,有可能在最小运行方式下线路末端灵敏度不足。此时应牺牲选择性保灵敏度。因过流二段保护有一定的延时可与主变低压侧保护过流一段(无时限)配合。网架的不合理,运行方式变化大,保护配置简单是造成农网选择性差的主要原因。要满足选择性就必须改善保护配置,过流保护应加装低电压闭锁或更换为受运行方式影响小的距离保护,最终解决办法是改善网架结构。

4.2可靠性低

(1)过负荷。由于整定计算提供负荷不准确,或对负荷预测不准确,尤其在特殊运行方式下,由过负荷引起保护动作。

(2)方式和保护不协调。方式安排未考虑保护是否满足配合要求。

(3)励磁涌流。农网线路上挂接的变压器台数很多,送电时励磁涌流很大,定值整定过小会因定值躲不过励磁涌流而误动。若过流一段保护按躲励磁涌流计算,则最小运行方式下几乎没有保护区,二者相互矛盾。解决办法是加一短延时或送电时退出速动段保护。

(4)随着农网改造,微机保护在逐渐取代电磁型、晶体管型、集成电路型继电保护,但继电保护动态管理、技术更新工作不能及时跟上,也是误动的原因之一。发生拒动的原因一是未进行二次回路的负载校验;二是保护软硬压板投错或漏投。

4.3灵敏度不够

继电保护最新发展方向范文篇12

【关键词】继电保护;历程;运用;发展;趋势

【分类号】:TM712

随着经济的快速发展,各行各业对继电保护技术的要求越来越高,特别是电力系统。要想做好继电保护技术的应用,首先应对其发展过程进行了解。本文仅谈谈其发展的大致历程、目前应用的保护技术与未来的发展趋势。

一、电力系统继电保护技术发展的历程

我国于二十世纪六七十年代开始应用电力系统继电保护装置技术,起初为晶体管继电保护器,随后的以集成运算放大器为基础的集成电路保护装置逐步取代了晶体管继电保护器。随着科学技术的发展,微机继电保护器得到了大力的推广。从电力系统继电保护技术的发展历程可以看到,当代电力系统继电保护技术的应用与发展正走向网络化和电子化。

二、电力系统继电保护技术的运用

1.要依据实际情况选择设备类型。电力系统继电保护装置是根据电力系统的实际需求来进行设备类型的选择的,根据实际情况对设备进行选择是做好继电保护技术的条件基础。首先,对电力系统继电保护装置最基本的要求就是要顺利进行工作,能够顺利的完成对系统运行状况的监测、电力系统故障的自动切除等工作。其次,由于现代网络监控技术的快速发展,并且在继电保护装置中得到了广泛的运用,这就要求继电保护装置能够与网络监控系统协调合作,达到电力系统的自动化和网络化监控所提出的具体要求。因此,在选择现代电力系统继电保护装置的设备类型时,要严格按照电力系统继电保护功能顺利工作的需要选择合适的设备做好继电保护工作。

2.电力系统继电保护功能应用的分析。在电力系统继电保护的应用中广泛用到了继电保护装置的电容器保护、主变保护、母联保护以及线路保护等功能。这些功能的应用,能够有效的对电力系统输变电过程中的设备进行保护,从而避免了故障的发生,节省了资金。

3.网络化背景下继电保护技术应用的分析。现代自动化技术的快速发展,在电力系统继电保护技术中广泛使用了网络、计算机科学以及综合自动化等技术。这些现代化自动化技术的结合和运用,使得现代电力系统继电保护装置更加智能化和网络化。首先,单片机技术在电力系统继电保护中的运用,使继电保护达到了微机化,为继电保护装置提供了更为精确和灵活的操作。其次,计算机技术和网络技术在继电保护装置的广泛应用,使得继电保护工作更为网络化、信息化。在加快了数据处理的速度的同时有效的达到了远程故障调节在线监控与报警信号等目的,使得工作更加智能化。

三、电力系统继电保护技术的发展趋势

科学技术的快速发展,使得现代电力系统继电保护技术朝着网络化、智能化、计算机化和一体化的方向发展,下文将从这三个方面具体分析继电保护技术的发展趋势。

1.网络智能化。科技的快速发展,也使得电力系统更加的智能化。神经网络、模糊逻辑、遗传算法等在电力系统的整体中得到了普遍的应用。在继电保护方面也开始使用这些技术。作为非线性的映射方法之一的神经网络技术,能够有效的计算出繁琐的非线性问题和难度很大的方程式,使工作变得更加简单。合理地综合运用这些智能方法能够加快处理问题的速度,使复杂问题变得简单。

2.自适应控制技术将会广泛应用。自适应继电保护的理念开始于二十世纪八十年代左右,它能够实时监测电力系统的运行状况,根据运行状况的变化以及运行中出现的故障及时地对保护定值、性能、特性等进行调整,从而达到保护的目的。在电力系统的频率、振荡发生变化、单相接地时短路过渡电阻出现异常以及出现其它故障时,利用自适应控制的技术可以迅速有效的提供相应的保护。自适应继电保护的宗旨是针对电力系统出现的种种变化最大限度的采取继电保护的性能,这种新的继电保护技术受到了人们的广泛关注,提高了微机保护的活力。自适应继电保护更加可靠,能够有效的改善系统响应时间,广泛应用于输变电线路的距离、变压器、发电机、自动重合闸等的保护工作等中。虽然自适应保护技术的起步时间较早,目前来说也取得了不错的效果,但如果想要达到真正的自适应,我们还有很长的一段路要走。这就要求我们更全面地收集系统故障和运行中的相关信息,做好信息收集和分析工作,做好保护相关的智能化和网络化工作。

3.现代计算机技术将得到普及应用。为彻底改变目前变电站监视、保护、计量和控制装置及各系统的分割状态,需要对系统集成技术的基础高压、超高压变电站进行全面的技术创新,从而在综合自动化技术和继电保护装置之间建立紧密的联系,更好的满足远程控制与信息的共享以及集成与资源的共享的要求。其核心是微机保护装置、远方的终端单元(RTU),在计算机系统中加入变电所的测量、信号、控制、计费等回路,替代原有的继电控制保护屏,与此同时还能减少对设备的资金投入,节约占用面积,使系统更加稳固可靠。目前,为了更好地做好控制、保护和测量工作,我们通过控制电缆将室外变电站的所有装备,如变压器、线路等的电压、二次电流连接到主控室,在铺设电缆时需要投入大量的资金,耗费大量的人力。此外,其二次回路也十分繁琐。此时,如果在室外变电站要求保护的设备附近合理地安装控制、测量、保护、数据通信一体化的计算机,对被保护设备的电压、电流量进行数字化转化,通过计算机网络技术将其传输到主控室内,这样就可以有效的减少在电缆方面的资金投入,同时传输的质量也得到提高,能够有效的避免电磁信号产生的影响。

四、结论

本文首先介绍了电力系统中继电保护技术的发展过程,然后论述了继电保护技术的应用,最后指出了电力系统中继电保护技术未来的发展趋势。旨在帮助相关部门做好继电保护技术的应用工作,明确其未来的发展方向,使相关人员更好的做好本职工作。由于本人能力有限,对这方面的研究还不够深入,但相信通过更多专业人士的共同努力,一定会更好地应用继电保护技术,做好电力系统中的继电保护工作,从而保证电力系统的持续稳定运行,为社会经济发展和群众生产生活做出更大的贡献。

参考文献:

    【公文范文】栏目
  • 上一篇:七夕情人节空间留言
  • 下一篇:三年级植物观察日记字(6篇)
  • 相关文章

    推荐文章

    本站专题