时间与时刻
1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。
△t=t2—t1
2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。
3.通常以问题中的初始时刻为零点。
路程和位移
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。
质点:
(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:
①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
2.物理中,斜率k≠tanα(坐标轴单位、物理意义不同)
象中两图线的交点表示两物体在这一时刻相遇。
匀变速直线运动的速度图象
1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)
2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。
动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
【自由落体运动的定义】
从静止出发,只在重力作用下而降落的运动模式,叫自由落体运动。
自由落体运动是典型的匀变速直线运动;是初速度为零,加速度为g的匀加速直线运动。
地球表面附近的上空可看作是恒定的重力场。如不考虑大气阻力,在该区域内的自由落体运动的方向是竖直向下的(并非指向地心),加速度为重力加速度g的匀加速直线运动。
只有在赤道上或者两极上,自由落体运动的方向(也就是重力的方向)才是指向地球中心的。
g≈9.8m/s^2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
【自由落体运动的基本公式】
(1)Vt=gt
(2)h=1/2gt^2
(3)Vt^2=2gh
这里的h与x同样都是指位移,一般在自由落体中用h表示数值方向的位移量。
运动的合成与分解
如果某物体同时参与几个运动,那么这物体的实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。
运动合成与分解的运算法则:运动的合成与分解是指描述物体运动的各物理量即位移、速度、加速度的合成与分解。由于它们都是矢量,所以它们都遵循矢量的合成与分解法则。
合运动和分运动的关系:
(1)等效性:各分运动的规律叠加起来与合运动规律有相同的效果。
(2)独立性:某方向上的运动不会因为其它方向上是否有运动而影响自己的运动性质。
(3)等时性:合运动通过合位移所需时间和对应的每个分运动通过分位移的时间相等,即各分运动总是同时开始,同时结束的。