高中作文网

海洋微生物研究范例(3篇)

时间: 2024-05-07 栏目:公文范文

海洋微生物研究范文篇1

【关键词】海洋生物;天然产物;先导化合物

近代人类疾病谱的进化和改变给药物学家和药物化学家提出新的难题。随着中国进入WTO,中国医药界也面临着国际药业的激烈竞争和严峻挑战。在合成药,天然药和生物药的三大支柱药业中,最具有发展潜力并最可能形成中国自主知识产权的新药应首推天然药物。组合化学与高通量药物筛选技术的结合为快速发现有新药开发潜力的先导化合物开辟了新的研究途径。但是从天然资源中寻找具有显着生物活性的天然产物仍然是发现新药先导化合物的主要途径。因此加强从天然药用资源中发现对治疗人类重大疾病高效低毒的创新药物研究,具有其特殊的重要性和迫切性。

在天然药物资源中,海洋生物资源是保留最完整,来源最丰富,最具新药开发潜力的领域。由于海洋生态环境的特殊性(高盐度,高压,缺氧,避光),使得海洋生物产生的次生代谢产物的生物合成途径和酶反应系统与陆地生物相比有着巨大的差异,导致海洋生物往往能够产生一些化学结构新颖、生物活性多样、显着的海洋药物先导化合物,为新药研究与开发提供了大量的模式结构和药物前体。海洋生物资源是一个巨大的、潜在的、未来新药来源的宝库已成为一种共识。

海洋生物活性物质的研究是海洋药物研究的核心和基础。近30年来,科学家已从海洋植物、无脊椎动物等不同海洋生物中发现近万种海洋天然产物,其中结构新颖、具有显着生物活性和重要应用前景的化合物有数百种,如从海绵Luffariellavariabilis中得到的manolide具有选择性抑制与很多炎症疾病有关的磷酸酯酶A2的活性;而由海绵Halichondriaokadai中分得的okadaicacid则对蛋白磷酸酯酶具有高度的选择性抑制作用,可用于探测细胞磷酸化过程,进而阐明炎症性疾病的发病机理。这两个海洋生物分子现已商品化正式生产。美国国立卫生研究院(NIH)癌症研究所(NCI)每年投于海洋药物研究的科研经费占全部天然药物研究经费的一半以上,他们的巨大投入已获得丰厚的回报。仅目前正在NCI进行临床疗效评价的海洋抗癌药物就至少有6个,例如Ecteinascidin743,Dolastatin10,HalichondrinB等。此外还有一些很有前景的海洋药物候选物正在进行临床前研究。海洋生物活性物质不仅是对治疗癌症,而且在治疗其他多种疾病方面亦具有巨大的潜力和美好的应用前景。例如加勒比海鞘Pseudopterogorgiaelisabethae中发现的活性成分Pseudopterosins具有很强抗炎活性而被用于皮肤过敏性疾病的治疗。

我国海域辽阔,海洋生物资源丰富。据初步统计,我国海洋生物经分类鉴定的有2万多种,其中,仅我国近海发现的具有药用价值的海洋生物就有700多种。许多具有免疫、抗炎、抗肿瘤、抗病毒以及作用于心血管系统和神经系统的生物活性物质先后被分离、提纯,其中部分先导化合物已进入临床前研究,一些海洋新药已进入临床研究。

但与先进国家相比,我国目前能形成自主知识产权的海洋新药仍寥寥无几。主要原因是我国海洋先导化合物的应用基础研究力量薄弱,未能提供足够的结构新颖化合物供生物活性筛选,导致新药先导化合物发现的几率低。

故从海洋生物中发现大量结构新颖的先导化合物,建立与重大疾病相关的生物筛选模型,并以生物筛选为导向,是发现可供临床前及临床研究的海洋先导化合物,进而开发具有中国自主知识产权海洋新药的关键。

本文根据作者几年来从事海洋天然产物研究的体会,认为我国海洋动植物作为药物开发需要考虑如下几点:

1海洋生物资源的选择

我国海洋生物资源丰富,但可供新药开发的药用资源却十分有限。因此,在选择药用资源时应考虑资源的群落分布和滋养采集的可持续性,包括资源的可培养和可种植。此外,海洋生物的传统药学用途和民间药用的调查是开发海洋药物的重要捷径。其中,海洋中药在我国传统中药中占有一定的地位,根据中药理论对其药性、药味及其物质基础进行研究,可快速开发出海洋中药的新药产品。

此外,我国民间海洋用药如红树林植物具有多种疾病治疗作用,我国红树植物有12科15属27种,广布于我国东南沿海海岸线。据对民间红树植物的药用考证,我国民间具有长期药用红树植物的历史,如正红树为治疗肾结核,尿路结石等的特效药;红茄冬用于治疗血尿病;木榄果治疗糖尿病;老鼠勒根具有抗白血病和抗乙肝活性,海莲树皮提取物具有抑制肉瘤S180和Lewis肺癌活性。在“全国中草药汇编”(1978)中记载3种红树植物(老鼠勒,海芒果和黄槿)及其药用功效。据统计,我国近一半的红树植物对多种疾病具有治疗用途。然而,对红树药用植物的活性成分及其作用机理研究在国内少见报道。而国际上,特别是东南亚国家近年在国际杂志相继发表与红树植物的化学成分和生物活性的论文,表明国际上对红树植物的化学成分多样性及其生物活性已引起高度重视。该类药用资源具有可种植再生的优点,一方面可作为陆地保护植物,另一方面可作为药用资源,并可充分利用我国盐碱地和滩涂资源。近年研究结果表明,我国丰富的藻类资源具有各种药学功效包括抗糖尿病和抗病毒,由于藻类资源可作为大规模仿生养殖培养,对资源的可持续性应用存在巨大潜力。

2海洋药用天然产物的快速分离和鉴定系统的建立

现代色谱和波谱技术及其联机技术如HPLC2MS/MS,HPLC2NMR技术的推广和应用,改变了传统植物化学技术研究海洋天然产物的方法,加快了结构新颖天然化合物的发现速度。因此,建立快速分离和鉴定系统是开发海洋药物和快速发现药物先导化合物的关键瓶颈。

3靶向药物筛选体系的建立

引进新的筛选技术,如高内涵筛选(HighContentScreening,HCS)是指在保持细胞结构和功能完整性的前提下,同时检测被筛样品对细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导各个环节的影响,在单一实验中获取大量相关信息,确定其生物活性和潜在毒性。经典的高通量筛选(HighThroughputScreening,HTS)对创新药物的研究起到了不可替代的作用,虽然其结果较为准确,易于评价,但其检测模型均建立在单个药物作用靶分子的基础上,无法全面反映被筛样品的生物活性特征,只得到有限的数据,初筛得到的阳性结果需要进一步确认。而HCS是基于个体细胞对细胞表型的多次测量,有更多的生物学信息和多个终点的定量资料,可用于筛选和确认先导化合物。通过同步应用报告基因、荧光标记、酶学反应和细胞可视化等高内涵筛选常规检测技术,研究人员可以在新药研究的早期阶段获得活性化合物对细胞产生的多重效应的详细数据,包括细胞毒性、代谢调节和对其他靶点的非特异性作用等,从而显着提高发现先导化合物的速率,减少开发后期的失败率。因此,HCS将成为HTS的发展方向。显微荧光标记、数码影像分析以及图象数据处理技术的快速发展,使以高通量方式对细胞的多个生理环节进行检测成为可能,有力推动了药物筛选技术由高通量筛选向高内涵筛选方向的革命化转变。

4针对重大疾病的创新海洋药物研究

411海洋抗肿瘤活性物质从海洋生物中寻找海洋抗肿瘤活性化合物一直是海洋天然产物研究的重点之一。从海洋动物中获得的次生代谢产物10%具有抗种瘤活性,从海洋植物中获得的化合物315%具有抗肿瘤或细胞毒活性。目前已从海绵,海鞘,珊瑚,海洋软体动物,海洋红树植物等海洋生物中获得数百种具有明显抗肿瘤活性的化合物,结构类型包括核苷类、酰胺类、聚醚类、萜类、大环内酯类、多肽类等。目前至少已有15个海洋抗癌药物进入临床或临床前研究阶段。

已进入Ⅱ期临床研究的抗肿瘤海洋活性化合物如从加勒比海鞘中分离的didemninB,ecteinascidin743,用于治疗肺癌和皮肤癌,具有显着的疗效;从总合草苔虫中分离的草苔虫素bryostatins和从海兔中分离的海兔毒素dolastatin对白血病、乳腺癌等多种肿瘤有很好的疗效;膜海鞘素didemninB是第一个进入临床试验的抗癌海洋药物;从被囊动物Tri2didemnum中分离出来的环肽化合物aplidine,dehydrodidemninB,curacinA,discoclermolide,eleutherobin,halichondrinB,具有强烈的抗白血病和黑色素瘤活性。目前应用最广的抗癌药氟尿嘧啶,是隐南瓜海绵中的海绵核苷的结构修饰产物。最近,科学家从海绵Aplysiasp1中发现了一种新的抗癌活性物质aplyronineA,体外实验结果对P338白血病细胞,肺癌细胞在低浓度下具有显着的抑制活性,T/C为544%,显示出显着的延长生命的效果,是具临床应用前景的药物先导化合物。从海绵获得的callystatinA对KB细胞显示出极强的活性(IC50=0101ng·kg-1)。大田软海绵酸(okadaicacid)为聚醚衍生物,能抑制致癌基因,使它逆转为正常表现型,现已成为研究生命科学的重要工具药。

此外,已在临床应用的鲨鱼软骨制剂(Scatp)可克服放化疗引起的副作用,增强患者机体免疫力;昆布多糖、海带多糖等8种多糖制成的复方海藻多糖是抗癌中药制剂;从海洋昆布和麒麟菜中提取的多糖类药物海力特,临床上用于治疗慢性乙肝和各种肿瘤有一定的疗效。

目前我国研究开发的抗肿瘤海洋药物,已进入临床研究或批准生产应用于临床的有62硫酸软骨素、脱溴海兔毒素、海鞘素A、B、C,膜海鞘素B、扭曲肉芝酯、刺参多糖钾注射液、海王金牡蛎、909胶囊、海洋宝胶囊、长棘海星苷、三环半萜C2Ⅱ,大田软海绵酸制剂、Hs272片、海兔毒素10、海力特、羊栖菜多糖制剂、海福康之侣等近30种。

412抗病毒活性物质病毒感染性疾病近年无论是在发病率上、还是在病种上均呈现快速上升趋势。然而,长期以来病毒性疾病的相关治疗药物却发展缓慢,迄今为止,仅有为数不多的几种药物如泛昔洛韦、齐多夫定、阿糖腺苷、六环鸟苷、干扰素等限制性地应用于临床。迄今已从海绵,海鞘,海藻等海洋生物中获得核苷类、生物碱类、萜类、多糖类、杂环类,多肽和蛋白类等抗病毒活性化合物。其中阿糖胞苷是从加勒比海生活的隐瓜海绵中获得第一个海洋抗病毒药物。

从同种海绵中还分离到对病毒L2G多聚酶活性有抑制作用的阿糖胸腺嘧啶。NCI发现了抗HIV蛋白化合物cyanovirin2N,并已成功完成了基因表达。我国近期开发的“PV2911”、珍珠贝壳酸性提取物等具有抗病毒感染功效。

另外,从地中海贪婪倔海绵中分离到的倍半萜类化合物对NO+逆转录酶的活性有强抑制作用,无细胞毒性,是一种十分理想的抗病毒先导化合物。从山海绵中分离的对单纯疱疹病毒、疱疹性口炎病毒在低浓度下即有显着抑制效果。这些海绵产生的活性物质主要是生物碱类、萜类、大环内酯类、核苷类、甾醇类、肽类和脂肪酸类化合物。

从藻类中发现的抗病毒活性物质主要是多糖类,多糖类物质能强烈干扰病毒的初始侵染过程,并最终与病毒颗粒形成无感染力的多糖病毒复合物,对病毒在宿主细胞中的复制和包装也有一定的抑制作用。藻类多糖能够激活机体的免疫系统或改善机体的生物应答功能,从而与保护正常细胞,提高整体免疫力有关。从加勒比海被囊动物三膜海鞘中分离到的一组环缩醛酸多肽,在抗肿瘤、抗病毒、抗感染等方面都表现出很强的药理活性,并在体外实验中发现该化合物对骨髓细胞病毒的逆转录酶有很强的抑制作用。

通过分离编码抗病毒活性物质的基因,将该基因转入高效表达体系,是大规模生产海洋肽类药物的一新的研究方向。通过克隆基因在载体上的表达,还可以产生系列酶合成的同系物,为新药筛选提供新的候选化合物。这方面工作目前正在我国开展,如利用自建的海带遗传转化模型,在海带中稳定表达了乙肝病毒表面抗原的转基因海带,其蛋白的平均表达量高,且表达产物具有天然表位。

另外,发展海洋生物技术,对药源生物进行人工培养是保护自然资源、解决样品短缺和采样重复性差的重要途径。

413海洋抗心血管疾病活性化合物对具有抗心血管疾病活性化合物的研究是海洋天然产物研究的另一重点。目前已对数千种海洋生物的代谢产物进行了活性筛选,发现一批具有显着活性的化合物,其化学结构类型包括萜类、多糖类、高不饱和脂肪酸类、喹啉酮类、生物碱类、肽类和核苷类等。但目前进入临床应用的抗心血管海洋药物仍然较少,我国拥有自主知识产权的药物有藻酸双酯钠(PSS),甘糖酯等。

在软体动物麝香蛸中分离出麝香蛸毒素,具有持续的降压作用,是迄今所知活性最强的降压物质,其效应比硝酸甘油强数千倍。另有50多种海洋生物毒素在心血管系统具有相当的活性,如海葵素thalassin和congestin,海葵毒素具有强心作用,对心率却无影响,可望开发成一种取代洋地黄毒苷的生化药物。海兔毒素不仅有强心作用而且有很强的降压作用。河豚毒素(TTX)的抗心律失常作用目前研究较多。海星酸性粘多糖有明显降低胆固醇及温和的抗凝血作用。从中国南海棘皮动物多棘海盘车分离获得海星甾醇(3β2羟基雄甾252烯2172酮)具有增强记忆及抗氧化作用,海星甾醇经结构修饰得化合物CO1,具有抗心律失常作用。从中国南海短指多型软珊瑚分离出的一种喹啉酮具有明显的心血管活性,作为抗心律失常药物开发是很有前途的。从中国南海小棒短指软珊瑚中分离到的柳珊瑚甾醇(gorgosterol)具有明显的抗心律失常和抗心肌缺血作用,能舒张血管、降低血压、减慢心率及减少心肌耗氧量作用,有望开发成心血管疾病药物。以牡蛎为主要原料的“东海三豪”等保健品具有降血脂、软化血管和改善微循环作用。利用海藻加工成的“脉怡康”、“必索”及螺旋藻制剂等对高脂血、动脉粥样硬化具有良好的预防和治疗作用。以合浦珠母贝提取物制成的珍珠精母注射液,治疗子宫出血疗效显着,已被国家计生委推荐为计划生育用药。

以上实例使人们看到海洋药物产业化的希望。

414海洋生物抗菌、抗炎活性化合物从海洋生物中提取分离的抗菌、抗炎化合物有脂肪酸类、糖酯类、丙烯酸类、苯酚类、溴苯酚类、吲哚类、酮类、多糖类、多肽类、N2糖苷类和β2胡萝卜素类等。最早一批海洋药物是抗菌药物,如头孢菌素类抗生素早已用于临床。

我国在开发海洋抗菌抗炎药物方面取得较显着成就,已开发了系列头孢菌素、玉足海参素渗透剂等海洋抗菌药物,海参中提取的海参皂苷抗真菌有效率达8815%,是人类历史上从动物界找到的第一种抗真菌皂苷。从刺参中分离得皂苷毒素holotoxinA,B已用于治疗脚癣和白癣菌感染。

从环节动物毛乳蛰虫中分离到的含溴化合物结构与灰黄霉素相似,已用于临床,商品名为平。国外临床使用氨基葡萄糖硫酸酯盐(glucosaminesulfate)治疗骨关节炎,能显着减轻患者的炎症和疼痛,毒副作用少。另外作为传统的民间药用植物—半红树药用植物杨叶肖槿中的man2sonones类化合物是高度氧化的倍半萜醌类化合物,和其树皮中提取到一种含棉酚(gossypol)具有很强的消炎作用,证实其在伤口治疗上有效。

从多棘海盘车中分离的海星皂苷能治疗胃溃疡,商品名为“胃可安”,及其配合中药制成的“海洋胃药”已应用于临床。褐藻多糖硫酸酯(FPS)在国内首先用于治疗慢性肾衰,尿毒症患者,现已按国家二类新药获准进入临床,商品名为“肾海康”。海螵蛸具有止血、涩经止带、制酸吞酸、剑疮等功效。

壳聚糖对格兰氏阳性菌的敏感性高于格兰氏阴性菌。

对于大肠杆菌和金黄色葡萄球菌,壳聚糖均显示出快速而显着的杀菌作用。壳聚糖的抗菌活性随分子量的下降而增强,并随脱乙酰度的增加而增大。且抗细菌活性比抗真菌活性更强,而水溶性壳聚糖的抗真菌活性要强于其抗细菌活性。从泥鳅中分离到一个21肽Misgurin,具有较强的体外广谱抗菌活性,且没有明显的溶血作用,其抗菌活性是蛙皮素的2~6倍。鲶(Parasilurusasotus)受伤后上皮粘膜细胞层分泌一种分子量为200014Da的抗菌肽parasinI,具有广谱抗菌性,其抗菌活性是蛙皮22的12~100倍。从虹鳟鱼皮中分离得到一种具有抗菌作用的白肽,在抵御胞内或胞外病毒方面起着关键作用。该肽对B1subtilis,P1citreus及E1coli等细菌的抑制作用非常强,远远超过昆虫抗菌肽的抑菌作用。研究表明,海绵中存在的环肽Diso2derminA具有抑菌活性,在浓度为3~116μg·mL-1时可分别抑制枯草杆菌和奇异型杆菌;加勒比海棉Discodermiasp1中分离得到的环肽PolydiscamideA也具有显着的抑菌活性,它对枯草杆菌的MIC为3μg·mL-1。海藻类中存在许多有抗菌活性的物质,如琼脂低聚糖、海藻糖等。

5海洋生物大分子的药学用途

海洋生物大分子指海洋生物中的多糖类、多肽类和蛋白类化合物。多数海洋生物能够产生多糖类聚合物,海洋多糖已证明具有各种各样的生理调节功能。目前国内外已从多种海洋动物中分离到活性多糖成分,如甲壳类动物的甲壳素;软骨鱼骨中的硫酸软骨素;多孔动物海绵,棘皮动物海参、海星中的硫酸多糖,软体动物扇贝、文蛤、鲍鱼、海兔等中的糖蛋白或糖胺聚糖等。另外,多糖在海藻中含量丰富,约占干重50%以上,是海洋多糖药物开发的重要资源。从海藻中还可分离到含微量元素多糖,如碘多糖、硒多糖、锌多糖等。微量元素多糖既可发挥微量元素有机态的营养作用、减少毒性,又可发挥多糖本身的生理活性,因此成为一个新的研究方向。如硒多糖能清除自由基、防治肿瘤;碘多糖能促进神经末梢细胞生长,具有增智作用;锌多糖能调节血液物质平衡,防止皮肤病等。目前有关海洋微生物活性多糖的研究报道很少。从海洋生物中分离的多糖往往具有高度硫酸化的特点,是开发抗病毒特别是抗HIV的重要资源,如从海藻中提取分离的硫酸多糖911和PS2870具有显着的抗HIV作用。硫酸多糖911能通过抑制逆转录酶活性、干扰吸附,来抑制HIV21对MT4细胞的急性感染和对H9细胞的慢性感染。

由于海洋生物生存的特定环境,导致海洋生物中存在的肽类化合物的结构和组成与陆生动植物有很大不同。

很多海洋肽类具有抗肿瘤、抗艾滋病、抗真菌、抗病毒及免疫调节等生理活性。其中抗癌多肽具有活性高、稳定性好等特点。如从海兔中分离到的小分子肽dolastatins,其抑制癌细胞的活性显着,是目前已知来源的抗肿瘤制剂中活性最强的一类;我国科学家从海葵中获得多种强心活性多肽物质和神经调节肽。肽类毒素研究是海洋活性物质研究中发展最迅速的领域之一。海洋动物肽类毒素作为一种攻击或防卫的武器,往往含多种神经、心血管和细胞毒素,一般以神经毒素为主,具有很强的麻醉、强心,抗癌、抗菌和抗病毒作用,是开发研制用于神经系统、心血管系统疾病治疗特效药物的重要来源。海洋生物肽类毒素具有毒性作用强、药效高、作用剂量小等特点,而且分子量相对较小,容易通过基因工程技术进行大批量生产。目前已知的肽类毒素有40余种。海洋抗菌肽是近10年来发展起来的一个研究热点。

抗菌肽具有广谱抗细菌、真菌、病毒、原虫和抗肿瘤功能及独特的作用机理,极有可能成为抗菌、抗病毒以及抗肿瘤药物的新来源。日本学者Nakamura等从亚洲鲎(Tachypleustridentatus)纯化出鲎素(tachyplesin),这是首次从海洋生物中发现的抗菌肽,能显着抑制革兰氏阴性和阳性菌生长。从对虾(Penaeusvannamei)中分离得到对虾肽pe2naeidins,该类肽由富含脯氨酸N端和3个分子内二硫键的C端结构域组成。它们对革兰氏阳性菌有强烈的抑制作用,MIC为016~215μmol·L-1,对革兰氏阴性菌抑制活性较弱,对真菌也表现出抑制作用。

目前许多海洋抗菌肽的基因结构已被确定。用异源大量表达载体(酵母系统)成功重组表达了P2和P32A两种对虾肽。重组肽有显着的抗真菌活性,抗细菌的活性主要集中于革兰氏阳性菌。从鲎血细胞中分离含小颗粒的血细胞与系统应答有关。当用微生物产生物质(如LPS)刺激时,这些血细胞会自发脱颗粒,将抗菌肽(如defensins)释放到胞外体液中。

我国是海洋大国,开发和利用海洋动物抗菌肽资源,将为研制肽类新药提供理想分子设计骨架和模板,为发展新的抗感染药物奠定重要基础。

6海洋极端生物的开发

极端生物的开发利用是海洋生物技术应用的又一个重要领域。具有耐高温、低温、抗压、耐盐碱等功能的极端生物是筛选和分离不同酶类、生物活性物质及次级代谢产物的重要资源。这些极端生物的开发利用将会形成很大的产业。日本计划在未来几年,在极端微生物开发利用上的产值将达到30多亿美元。另外,很值得一提的是海洋生物技术在新能源开发方面的应用。我国目前正在开展海洋极端微生物药学应用的相关研究。

7海洋生物产生的基因药物

海洋生物技术研究的快速发展得益于基础生命科学技术的创新和进步。全基因组测序与结构基因的分析及生物技术应用、DNA提取纯化和分子分析的自动化等无疑大大提高和扩展了海洋生物技术的研究水平和应用范围。

要缩短与国际海洋生物技术研究发展的差距,一项重要的措施是加大基础生命科学的研究和先进技术的发展,加大与水产养殖、天然产物、海洋环境保护、甚至与生物氢研发等应用领域密切相关的海洋分子生物学的研究。在当前选择1~2种有代表性的海洋生物(包括微生物)开展功能基因组学的研究是十分紧迫和必要的,同时,应用基因工程手段研制能替代海水养殖业中广为应用的抗生素的绿色生物药物也是非常急需的。另外,还应进一步扩展海洋生物技术在我国的应用领域,例如加强生物技术在海洋环境保护领域的应用研究,以便真正能够利用高新技术手段解决日益增多的海洋生态环境问题。

海洋药物基因工程主要是指将来自陆地的药物基因转入海洋生物中进行表达,或将海洋药物基因转入陆地微生物、植物或动物中表达,或将海洋药物基因转入海水养殖生物中表达。如海葵多肽毒素具有显着的强心作用,并有降血脂、抗血凝、抑制血栓形成等作用,活性强于毒毛旋花苷,临床前景十分看好。但由于海葵中的多肽毒素含量极微,难以满足临床前及临床试验用药的需要。故科学家们将人工合成的Ap2B基因与E1coli噬菌体基因构建成融合基因,在T49E1coli中表达,得到了融合蛋白,经过分离纯化、蛋白酶切等技术处理,获得高表达,其理化性质及生物活性与天然Ap2B肽毒素完全一致。

8加强海洋生物毒素研究

海洋生物毒素是海洋天然产物的重要组成部分,是海洋生物活性物质中研究进展最迅速的领域,它们具有结构特异、活性广泛且活性强等特点。许多高毒性海洋毒素对生物神经系统或心血管系统具有高特异性作用,可发展成神经系统或心血管系统药物的重要先导化合物,有的已被FDA批准为正式药物,如多肽类海葵毒素已作为强心药物的重要先导化合物。芋螺毒素在临床上用作特异诊断试剂,作为镇痛药疗效确切,不成瘾;ω2芋螺毒素用于癌症、艾滋病晚期的顽痛治疗,成本比鸦片类止痛剂大大降低,它比常用强万倍以上;α2芋螺毒素在小细胞肺癌的治疗中显示极好的应用前景。河豚毒素亦是一种较强的镇痛剂,可代替吗啡、杜冷丁等治疗神经痛。聚醚类毒素PTX(岩沙海葵毒素)、CTX(西加毒素)、MTX(刺尾鱼毒素)等分别具有强抑癌、高强心等作用,已成为新药开发的特殊模式结构。水母毒素有望研制成独特心血管药及神经分子生物学工具药,头足毒素(也称章鱼毒素)可望开发成抗心绞痛药物,海胆毒素和海蛇毒素在心血管、抗血栓药方面将大有作为。

9海洋中药现代化研究

近年,我国海洋生物研究的另一侧重点为海洋中药的现代化研究。海洋中药系指以中医药理论为指导的传统海洋药物。我国最早的医学文献《黄帝内经》中就有“乌贼骨作丸,饮以鲍鱼汁治血枯”的记载。我国的《神农本草经》、《本草纲目》等收载的海洋药物已达百余种。《中药大辞典》收载海洋中药134种;《海洋药物与效方》收载我国常见海洋药物208种,海药效方1197首;《中华本草》亦收载了海洋药物802种。海洋中药传统药材如昆布、海带、紫菜、乌贼骨(海螵蛸)、海马、海龙等涉及的海洋生物包括绿藻、褐藻、红藻等藻类以及腔肠动物、环节动物、软体动物、节肢动物、棘皮动物、脊索动物等。以海洋生物制成的单方药物有22种,以海洋生物配伍其他药物制成的复方中成药有152种。我国对海洋中药的研发已逐渐形成产业。如应用于临床的双海止咳膏、复方褐藻酸胶囊、海力特、复方全牡蛎胶囊、海珍玉液、珍珠精母口服液、海蛇祛风湿灵胶囊、海蛇海龙口服液等,在临床上发挥了重要作用。海洋中药的制剂涉及传统剂型和新制剂的各剂型。新晨

我国从藻类中提取得到具有抗艾滋病活性的一类药物聚甘古酯,可认为是海洋中药现代化研究的实例之一。

10结语

近十几年来,我国海洋药物的研究工作不断向广度和深度发展,发现了数百种新化合物,开发了数种海洋新药,有些已达国际先进水平。近年来,我国政府和少数地方政府对中国海洋药物事业高度重视,正在开展“科技兴海技术”的海洋药物专题研究,尤其是各种基金给予大力资助,以海洋药物为中心的专业化药业逐渐形成。

海洋微生物研究范文

关键词海洋生物技术

发展展望

近10年来,由于海洋在沿海国家可持续发展中的战略地位日益突出,以及人类对海洋环境特殊性和海洋生物多样性特征的认识不断深入,海洋生物资源多层面的开发利用极大地促进了海洋生物技术研究与应用的迅速发展。1989年首届国际海洋生物技术大会(以下简称MPS大会)在日本召开时仅有几十人参加,而1997年第四届IMBC大会在意大利召开时参加入数达1000多人。现在IMBC会议已成为全球海洋生物技术发展的重要标志,出现了火红的局面。《IMBC2000》在澳大利亚刚刚开过,《IMBC2003》的筹备工作在日本已经开始,以色列为了举办们《IMBC2006》早早作了宣传,并争到了举办权。每3年一届的IMBC不仅吸引了众多高水平的专家学者前往展示与交流研究成果,探讨新的研究发展方向,同时也极大地推动了区域海洋生物技术研究的发展进程。在各大洲,先后成立了区域性学术交流组织,如亚太海洋生物技术学会、欧洲海洋生物技术学会和泛美海洋生物技术协会等。各国还组建了一批研究中心,其中比较著名的为美国马里兰大学海洋生物技术中心、加州大学圣地亚哥分校海洋生物技术和环境中心,康州大学海洋生物技术中心,挪威贝尔根大学海洋分子生物学国际研究中心和日本海洋生物技术研究所等。这些学术组织或研究中心不断举办各种专题研讨会或工作组会议研究讨论富有区域特色的海洋生物技术问题。1998年在欧洲海洋生物技术学会、日本海洋生物技术学会和泛美海洋生物技术协会的支持下,原《海洋生物技术杂志》与《分子海洋生物学和生物技术》合刊为《海洋生物技术》学报(以下简称MBT),现在它已成为一份具有权威性的国际刊物。海洋生物技术作为一个新的学科领域已明确被定义为“海洋生命的分子生物学如细胞生物学及其它的技术应用”。

为了适应这种快速发展的形势,美国、日本、澳大利亚等发达国家先后制定了国家发展计划,把海洋生物技术研究确定为21世纪优先发展领域。1996年,中国也不失时机地将海洋生物技术纳入国家高技术研究发展计划(863计划),为今后的发展打下了基础。不言而喻,迄今海洋生物技术不仅成为海洋科学与生物技术交叉发展起来的全新研究领域,同时,也是21世纪世界各国科学技术发展的重要内容并将显示出强劲的发展势头和巨大应用潜力。

1.发展特点

表1和表2列出的资料大体反映了当前海洋生物技术研究发展的主要特点。

1.1加强基础生物学研究是促进海洋生物技术研究发展的重要基石

海洋生物技术涉及到海洋生物的分子生物学、细胞生物学、发育生物学、生殖生物学、遗传学、生物化学、微生物学,乃至生物多样性和海洋生态学等广泛内容,为了使其发展有一个坚实的基础,研究者非常重视相关的基础研究。在《IMBC2000》会议期间,当本文作者询问一位资深的与会者:本次会议的主要进步是什么?他毫不犹豫的回答:分子生物学水平的研究成果增多了。事实确实如此。近期的研究成果统计表明,海洋生物技术的基础研究更侧重于分子水平的研究,如基因表达、分子克隆、基因组学、分子标记、海洋生物分子、物质活性及其化合物等。这些具有导向性的基础研究,对今后的发展将有重要影。

1.2推动传统产业是海洋生物技术应用的主要方面

目前,应用海洋生物技术推动海洋产业发展主要聚焦在水产养殖和海洋天然产物开发两个方面,这也是海洋生物技术研究发展势头强劲。充满活力的原因所在。在水产养殖方面,提高重要养殖种类的繁殖、发育、生长和健康状况,特别是在培育品种的优良性状、提高抗病能力方面已取得令人鼓舞的进步,如转生长激素基因鱼的培育、贝类多倍体育苗、鱼类和甲壳类性别控制、疾病检测与防治、DNA疫苗和营养增强等;在海洋天然产物开发方面,利用生物技术的最新原理和方法开发分离海洋生物的活性物质、测定分子组成和结构及生物合成方式、检验生物活性等,已明显地促进了海洋新药、酶、高分子材料、诊断试剂等新一代生物制品和化学品的产业化开发。转贴于

表1近期IMBC大会研讨的主要内容

表2近期IMBC大会和《MarineBiotechnology》学报论文统计表

1.3保证海洋环境可持续利用是海洋生物技术研究应用的另一个重要方面

利用生物技术保护海洋环境、治理污染,使海洋生态系统生物生产过程更加有效是一个相对比较新的应用发展领域,因此,无论是从技术开发,还是产业发展的角度看,它都有巨大的潜力有待挖掘出来。目前已涉及到的研究主要包括生物修复(如生物降解和富集、固定有毒物质技术等)、防生物附着、生态毒理、环境适应和共生等。有关国家把“生物修复”作为海洋生态环境保护及其产业可持续发展的重要生物工程手段,美国和加拿大联合制定了海洋环境生物修复计划,推动该技术的应用与发展。

1.4与海洋生物技术发展有关的海洋政策始终是公众关注的问题

其中海洋生物技术的发展策略、海洋生物技术的专利保护、海洋生物技术对水产养殖发展的重要性、转基因种类的安全性及控制问题、海洋生物技术与生物多样性关系以及海洋环境保护等方面的政策、法规的制定与实施倍受关注。

2.重点发展领域

当前,国际海洋生物技术的重点研究发展领域主要包括如下几个方面:

2.1发育与生殖生物学基础

弄清海洋生物胚胎发育、变态、成熟及繁殖各个环节的生理过程及其分子调控机理,不仅对于阐明海洋生物生长、发育与生殖的分子调控规律具有重要科学意义,而且对于应用生物技术手段,促进某种生物的生长发育及调控其生殖活动,提高水产养殖的质量和产量具有重要应用价值。因此,这方面的研究是近年来海洋生物技术领域的研究重点之一。主要包括:生长激素、生长因子、甲状腺激素受体、促性腺激素、促性腺激素释放激素、生长一催乳激素、渗透压调节激素、生殖抑制因子、卵母细胞最后成熟诱导因子、性别决定因子和性别特异基因等激素和调节因子的基因鉴定、克隆及表达分析,以及鱼类胚胎于细胞培养及定向分化等。

2.2基因组学与基因转移

随着全球性基因组计划尤其是人类基因组计划的实施,各种生物的结构基因组和功能基因组研究成为生命科学的重点研究内容,海洋生物的基因组研究,特别是功能基因组学研究自然成为海洋生物学工作者研究的新热点。目前的研究重点是对有代表性的海洋生物(包括鱼、虾、贝及病原微生物和病毒)基因组进行全序列测定,同时进行特定功能基因,如药物基因、酶基因、激素多肽基因、抗病基因和耐盐基因等的克隆和功能分析。在此基础上,基因转移作为海洋生物遗传改良、培育快速生长和抗逆优良品种的有效技术手段,已成为该领域应用技术研究发展的重点。近几年研究重点集中在目标基因筛选,如抗病基因、胰岛素样生长因子基因及绿色荧光蛋白基因等作为目标基因;大批量、高效转基因方法也是基因转移研究的重点方面,除传统的显微注射法、基因枪法和精子携带法外,目前已发展了逆转录病毒介导法,电穿孔法,转座子介导法及胚胎细胞介导法等。

2.3病原生物学与免疫

随着海洋环境逐渐恶化和海水养殖的规模化发展,病害问题已成为制约世界海水养殖业发展的瓶颈因子之一。开展病原生物(如细菌、病毒等)致病机理、传播途径及其与宿主之间相互作用的研究,是研制有效防治技术的基础;同时,开展海水养殖生物分子免疫学和免疫遗传学的研究,弄清海水鱼、虾、贝类的免疫机制对于培育抗病养殖品种、有效防治养殖病害的发生具有重要意义。因此,病原生物学与免疫已成为当前海洋生物技术的重点研究领域之一,重点是病原微生物致病相关基因、海洋生物抗病相关基因的筛选、克隆,海洋无脊椎动物细胞系的建立、海洋生物免疫机制的探讨、DNA疫苗研制等。

2.4生物活性及其产物转贴于

海洋生物活性物质的分离与利用是当今海洋生物技术的又一研究热点。现人研究表明,各种海洋生物中都广泛存在独特的化合物,用来保护自己生存于海洋中。来自不同海洋生物的活性物质在生物医学及疾病防治上显示出巨大的应用潜力,如海绵是分离天然药物的重要资源。另外,有一些海洋微生物具有耐高温或低温、耐高压、耐高盐和财低营养的功能,研究开发利用这些具特殊功能的海洋极端生物可能获得陆地上无法得到的新的天然产物,因而,对极端生物研究也成为近年来海洋生物技术研究的重点方面。这一领域的研究重点包括抗肿瘤药物、工业酶及其它特殊用途酶类、极端微生物中特定功能基因的筛选、抗微生物活性物质、抗生殖药物、免疫增强物质、抗氧化剂及产业化生产等。

2.5海洋环境生物技术

该领域的研究重点是海洋生物修复技术的开发与应用。生物修复技术是比生物降解含义更为广泛,又以生物降解为重点的海洋环境生物技术。其方法包括利用活有机体、或其制作产品降解污染物,减少毒性或转化为无毒产品,富集和固定有毒物质(包括重金属等),大尺度的生物修复还包括生态系统中的生态调控等。应用领域包括水产规模化养殖和工厂化养殖、石油污染、重金属污染、城市排污以及海洋其他废物(水)处理等。目前,微生物对环境反应的动力学机制、降解过程的生化机理、生物传感器、海洋微生物之间以及与其它生物之间的共生关系和互利机制,抗附着物质的分离纯化等是该领域的重要研究内容。

3.前沿领域的最新研究进展

3.1发育与生殖调控

应用GIH(性腺抑制激素)和GSH(性腺刺激激素)等激素调控甲壳类动物成熟和繁殖的技术[1],研究了甲状腺激素在金绍生长和发育中的调控作用,发现甲状腺激素受体mRNA水平在大脑中最高,在肌肉中最低,而在肝、肾和鳃中表达水平中等,表明甲状腺素受体在成体金银脑中起着重要作用[1],对海鞘的同源框(Homeobox)基因进行了鉴定,分离到30个同源框基因[1],建立了青鳉的同源框(Homeobox)基因[1],建立了青鳉胚胎干细胞系并通过细胞移植获得了嵌合体青鳉[1],建立了虹鳟原始生殖细胞培养物并分离出Vasa基因[2],进行斑节对虾生殖抑制激素的分离与鉴定[2],应用受体介导法筛选GnRH类似物,用于鱼类繁殖[2],建立了海绵细胞培养技术,用于进行药物筛选[2],建立了将海胆胚胎作为研究基因表达的模式系统[2],通过基因转移开展了海胆胚胎工程的研究[2],研究了人葡糖转移酶和大鼠已糖激酶cDNA在虹鳟胚胎中的表达[3],建立了通过细胞周期蛋白依赖的激酶活性测定海水鱼苗细胞增殖速率的方法[3],研究了几丁质酶基因在斑节对虾蜕皮过程中的表达[4],从海参分离出同源框基因,并进行了序列的测定[4]。

3.2功能基因克隆

建立了牙鲆肝脏和脾脏mRNA的表达序列标志,从深海一种耐压细菌中分离到压力调节的操纵子,从大西洋鲑分离到雌激素受体和甲状腺素受体基因,从挪威对虾中分离到性腺抑制激素基因[1];将DNA微阵列技术在海绵细胞培养上进行了应用,构建了班节对虾遗传连锁图谱,建立了海洋红藻EST,从海星卵母细胞中分离出成熟蛋白酶体的催化亚基,初步表明硬骨头鱼类IGF-I原E一肽具有抗肿瘤作用[2];构建了海洋酵母De—baryomyceshansenii的质粒载体,从鲤鱼血清中分离纯化出蛋白酶抑制剂,从兰蟹血细胞中分离到一种抗菌肽样物质,从红鲍分离到一种肌动蛋白启动子,发现依赖于细胞周期的激酶活性可用作海洋鱼类苗种细胞增殖的标记,克隆和定序了鳗鱼细胞色素P4501AcD-NA,通过基因转移方法分析了鳗细胞色素P450IAI基因的启动子区域,分离和克隆了鳗细胞色素P450IAI基因,建立了适宜于沟绍遗传作图的多态性EST标记,构建了黄盖鲽EST数据库并鉴定出了一些新基因,建立了班节对虾一些组织特异的EST标志,从经HirameRhabdovirus病毒感染的牙鲆淋巴细胞EST中分离出596个cDNA克隆[3];用PCR方法克隆出一种自体受精雌雄同体鱼类的ß一肌动蛋白基因,从金鲷cDNA文库中分离出多肽延伸因子EF-2CDNA克隆,在湖鳟基因组中发现了TC1样转座子元件[4];鉴定和克隆出的基因包括:南美白对虾抗菌肽基因、牡蛎变应原(allergen)基因、大西洋鳗和大西洋鲑抗体基因、虹鳟Vasa基因、青鳉P53基因组基因、双鞭毛藻类真核启始因子5A基因、条纹鲈GtH(促性腺激素)受体cDNA、鲍肌动蛋白基因、蓝细菌丙酮酸激酶基因、鲤鱼视紫红质基因调节系列以及牙鲆溶菌酶基因等[1—4]。

3.3基因转移

分离克隆了大马哈鱼IGF基因及其启动子,并构建了大马哈鱼IGF(胰岛素样生长因子)基因表达载体[1]。通过核定位信号因子提高了外源基因转移到斑马鱼卵的整合率[1],建立了快速生长的转基因罗非鱼品系并进行了安全性评价;对转基因罗非鱼进行了三倍体诱导,发现三倍体转基因罗非鱼尽管生长不如转基因二倍体快,但优于未转基因的二倍体鱼,同时,转基因三倍体雌鱼是完全不育的,因而具有推广价值[2];研究了超声处理促进外源DNA与金鲷精子结合的技术方法,将GFP作为细胞和生物中转基因表达的指示剂;表明转基因沟鲶比对照组生长快33%,且转基因鱼逃避敌害的能力较差,因而可以释放到自然界中,而不会对生态环境造成大的危害[3];应用GFP作为遗传标记研究了斑马鱼转基因的条件优化和表达效率[3];在抗病基因工程育种方面,构建了海洋生物抗菌肽及溶菌酶基因表达载体并进行了基因转移实验[2];在转基因研究的种类上,目前已从经济养殖鱼类逐步扩展到养殖虾、贝类及某些观赏鱼类[2.3]。通过基因枪法将外源基因转到虹鳟肌肉中获得了稳定表达[4]。

3.4分子标记技术与遗传多样性

研究了将鱼类基因内含子作为遗传多样性评价指标的可行性,应用SSCP和定序的方法研究了大西洋和地中海几种海洋生物的遗传多样性[1]。研究了南美白对虾消化酶基因的多态性[1];利用寄生性原生动物和有毒甲藻基因组DNA的间隔区序列作标记检测环境水体中这些病原生物的污染程度,应用18S和5.8S核糖体RNA基因之间的第一个内部间隔区(ITC—1)序列作标记进行甲壳类生物种间和种内遗传多样性研究[2];研究了斑节对虾三个种群的线粒体DNA多态性,用PCR技术鉴定了夏威夷Gobioid苗的种类特异性。通过测定内含子序列揭示了南美白对虾的种内遗传多样性,采用同功酶、微卫星DNA及RAPD标记对褐鳟不同种群的遗传变异进行了评价,在平鱼鉴定并分离出12种微卫星DNA,在美国加州鱿鱼上发现了高度可变的微卫星DNA[3];弄清了一种深水鱼类(Gonostomagracile)线粒体基因组的结构,并发现了硬骨鱼类tRNA基因重组的首个实例,测定了具有重要商业价值的海水轮虫的卫星DNA序列,用RAPD技术在大鲮鲆和鳎鱼筛选到微卫星重复片段,从多毛环节动物上分离出高度多态性的微卫星DNA,用RAPD技术研究了泰国东部泥蟹的遗传多样性[3];用AFLP方法分析了母性遗传物质在雌核发育条纹鲈基因组中的贡献[4]。

3.5DNA疫苗及疾病防治

构建了抗鱼类坏死病毒的DNA疫苗[1];开展了虹鳟IHNVDNA疫苗构建及防病的研究,表明用编码IHNV糖蛋白基因的DNA疫苗免疫虹鳟,诱导了非特异性免疫保护反应,证明DNA免疫途径在鱼类上的可行性,从虹鳟细胞系中鉴定出经干扰素可诱导的蛋白激酶[2];建立了养殖对虾病毒病原检测的ELISA试剂盒,用PCR等分子生物学技术鉴定了虾类的病毒性病原,将鱼类的非特异性免疫指标用于海洋环境监控,研究了抗病基因转移提高鲷科鱼类抗病力的可行性,研究了蛤类唾液酸凝集素的抗菌防御反映[2];研究了一种海洋生物多糖及其衍生物的抗病毒活性[3];建立了测定牡蛎病原的PCR—ELISA方法[3];研究了LatrunculinB毒素在红海绵体内的免疫定位[4]。

3.6生物活性物质

从海藻中分离出新的抗氧化剂[1],建立了大量生产生物活性化合物的海藻细胞和组织培养技术,建立了通过海绵细胞体外培养制备抗肿瘤化合物的方法[1];从不同生物(如对虾和细菌)中鉴定分离出抗微生物肽及其基因,从鱼类水解产物中分离出可用作微生物生长底物的活性物质,海洋生物中存在的抗附着活性物质,用血管生成抑制剂作为抗受孕剂,从蟹和虾体内提取免疫激活剂,从海洋藻类和蓝细菌中纯化光细菌致死化合物,海星抽提物在小鼠上表现出批精细胞形成的作用,从海洋植物Zosteramarina分离出一种无毒的抗附着活性化合物,从海绵和海鞘抽提物分离出抗肿瘤化合物,开发了珊瑚变态天然诱导剂,从海胆中分离出一种抗氧化的新药,在海洋双鞭毛藻类植物中鉴定出长碳链高度不饱和脂肪酸(C28),表明海洋真菌是分离抗微生物肽等生物活性化合物的理想来源[2];发现海洋假单胞杆菌的硫酸多糖及其衍生物具有抗病毒活性,从硬壳蛤分离出谷光甘肽一S一转移酶,从鲤血清中分离出丝氨酸蛋白酶抑制剂,从海绵中分离出氨激脯氨酸二肽酶,从一种珊瑚分离出具DNA酶样活性的物质,建立了开放式海绵养殖系统,为生物活性物质的大量制备提供了充足的海绵原料[3];从虾肌水解产物中分离到抗氧化肽物质[4];从一种海洋细菌中分离纯化出N一乙酸葡糖胺一6一磷酸脱乙酸酶[4]。

3.7生物修复、极端微生物及防附着

研究了转重金属硫蛋白基因藻类对海水环境中重金属的吸附能力,表明明显大于野生藻类[1],研究了石油降解微生物在修复被石油污染的海水环境上的可疗性及应用潜力[1];研究了海洋磁细菌在去除和回收海水环境中重金属上的应用潜力[1];用Bacillus清除养鱼场污水中的氮,用分子技术筛选作为海水养殖饵料的微藻,开发了六价铬在生物修复上的应用潜力,分离出耐冷的癸烷降解细菌,研究了海洋环境中多芳香化烃的微生物降解技术[2];从噬盐细菌分离出渗透压调节基因,并生产了重组Ectoine(渗透压调节因子),从2650米的深海分离到一种耐高温的细菌,这种细菌可用来分离耐高温和热稳定的酶,在耐高温的archaea发现了D型氨基酸和无氧氨酸消旋酶,测定了3种海洋火球菌的基因组DNA序列,借助于CROSS/BLAST分析进行了特定功能基因的筛选,从海底沉积物、海水和北冰洋收集了1000多种噬冷细菌,并从这些细菌中分离到多种冷适应的酶[2];建立了一种测定藤壶附着诱导物质的简单方法,研究了Chlorophyta和共生细菌之间附着所必需的形态上相互作用,研究了珊瑚抗附着物质(dterpene)类似物的抗附着和麻醉作用[3];分析了海岸环境中污着的起始过程,并对沉积物和附着物的影响进行了检测[4]。

4.展望与建议

海洋微生物研究范文

报告中,汪品先指出,从海底看海洋是一个新的角度,应当下到海底看地球,建立海底观测网络,开展深海科技与技术研究,向深海进军。汪品先说:“人类历来是在海洋之外看海洋,看到的只是一个单向运动的世界;而当人类潜入深海,立足海底向上看,才会看到更多的精彩,获得更多的发现。”

从海底看上覆海水:海洋是一个双向系统

“海底是‘漏’的,有下去的水,有上来的水。上来的水中,热的叫热液,冷的叫冷泉。海底以下的地下水,被比喻为‘海底下的海洋’。”汪品先说,“深海热液不但会形成‘黑烟囱’,还会在其周围形成特殊的生态系统,它是一个不靠阳光、不靠光合作用,而是依靠地球内部热量进行化学合成作用的‘黑暗生物群’。近年来,我国‘大洋一号’考察船与美国伍兹霍尔海洋研究所合作,首次发现了西南印度洋‘超慢速扩张’洋中脊的热液喷出口。现在,在世界三大洋甚至北冰洋都采集到热液口的硫化物和‘黑烟囱’。”

据汪品先介绍,全大洋海水每隔500万~1100万年都要到海底热液系统里循环一周;如果把洋中脊两翼的扩散对流也算上,循环周期减为100万年。地球内部产生的热通量,25%~30%由大洋热液系统向外输送。“这些都是影响到海水成分、影响地球环境的大事情”。

与热液相对的是深海冷泉,最有名的是天然气水合物,也叫“可燃冰”。它不光是一种潜在的能源,也是一种环境因素:只要温度上升或者压力减小,海底的可燃冰就会分解,甚至喷溢出来。“另外,冷泉在海底会形成碳酸盐,形成特殊的冷泉生物群。”汪品先解释说。

除热液、冷泉之外,第三种水就是海底溢出的地下水。“实际上,世界各地海底都有地下水出来,在岸边的可能是淡水,大洋底下的可能是咸水”。从香港吐露港到舟山群岛,都发现有淡水从海底溢出。有人研究后提出,大西洋的海底地下水输入量与河流的输入量相当;美国一条小河的测试表明,海底地下水输入海洋的碳,居然比河流输入的还多。

汪品先说,海洋是一个双向系统,海面和海底是能量和物质的上下两个来源;海底是“漏”的,既有海水渗入地壳,又有流体从海底溢出,将海底以下以至于地壳深处的物质带入海水。因此,深海海底是地球表层和地球内部之间的窗口,从海底就可以看到地球内部发生的一些事情。

从海底看地球的内部:贴近地球深部的窗口

水和碳是全球变化的两大要素,也是目前被广泛关注的问题。但鲜为人知的是,水和碳都会循环到海底底下,也会从海底底下循环上来。

汪品先在谈到碳循环时表示,地球内部有碳是公认的,但对碳的数量估计众说纷纭。有人推测地球内部的碳占据重量的0.07%,也有人估计占1.5%,相差20多倍。俄罗斯很早就有学者提出石油天然气的“无机成因学说”,其出发点也是地球深部有碳。地幔里有金刚石、火成碳酸盐,而地核里碳可能更多。大家熟悉的可燃冰,它的碳和能量从哪里来?是不是从地球内部来?这一直是一个争论。

汪品先认为,人们对于深海碳循环知道得太少,其中一个关键环节就是微生物的作用。海洋生物量的90%属于微生物,海水里90%的有机碳是只能为微生物所用的溶解有机碳;水深越大,微生物的作用也越大。海底的沉积物、甚至于玄武岩里,也都存在大量微生物,几十万年甚至几百万年前的微生物还在生存。这种海底以下的“深部生物圈”大概占到全世界生物量的30%,它们的能量从哪里来?它们的碳从哪里来?深海微生物和有机碳在碳循环中起何作用?……

汪品先提醒大家,深海海底是不是碳循环研究的缺口?如果确实如此,我们就疏忽了一个非常重要的碳源反应――深海海底的碳或许就是人们在研究地球上碳平衡时遗漏的重要环节。

此外,汪品先在报告中指出,病毒在生物循环中扮演着极为重要的角色,是深海海底碳循环中的重要一环。在深海海底,病毒是微型生物群的主要“杀手”,在深海碳循环中起重要作用。他认为,深层水的演变可以影响“深部生物圈”,有可能是大洋碳储库长周期的变化机制。

“我们从海底看地球内部,不光有水循环,还有碳循环。深海海底是离地球内部最近的地方,也是将来钻穿地壳的地方,更是我们研究地球深部的窗口。这应该是我们需要关注并投身其中的一个新领域。”汪品先说。

从海底看地球的平台:建立海底观测网

回顾科学发展历史,观测地球系统有三个平台:第一个平台是在海面和地面的观测,第二个平台是在空间通过遥测遥感来观测地球,第三个平台是人类潜到海底,到海底进行观测,即建立海底观测网。

海底不仅向上可以观测水层、向下可以观测地球内部,而且是观测海洋最安全的去处――不受海洋风浪、能源等限制,能长期连续实时原位地观测海底以下地震、地壳内流体和生物等活动。

随着技术水平的不断提高,在海底设立观测网已经标志着海洋科学的新阶段:从船上的“考察”发展到在海洋内部的“观测”。

    【公文范文】栏目
  • 上一篇:财务经理年度工作总结报告(25篇)
  • 下一篇:论语心得体会(16篇)
  • 相关文章

    推荐文章

    本站专题