关键词:物质构成奥秘;认识模型;单元整体教学;微观认识发展;教学策略
文章编号:1005C6629(2015)2C0024C06中图分类号:G633.8文献标识码:B
1问题的提出
“物质构成奥秘”是义务教育化学课程标准[1]规定的5大主题之一,包含化学物质的多样性、微粒构成物质、认识化学元素和物质组成的表示4个二级主题。该主题教学对学生有两大发展点:(1)帮助学生建立正确的微粒观;(2)应用微观认识描述物质的组成和构成,对物质进行分类,解释物质性质和变化。
日常教学中,很多教师反映:学生基于日常生活常识以及小学科学和初中物理的学习对“物质构成奥秘”主题有一定的认识,他们对原子、分子、元素等概念并不陌生,但是经过“物质构成奥秘”主题的学习后,仍然会出现一系列的错误,如:概念混淆、物质分类出错、概念应用错误、宏观与微观分不清楚、对变化的本质把握不准。已有研究[2]提出学生在本主题存在一些认识偏差,如表1。可以说,学生并没有形成基于微粒的认识方式,不能基于微粒去认识物质组成/构成、性质和变化。
已有研究[3~5]中关于“物质构成奥秘”主题教学研究主要集中在:如何创设生动的情景增强教学的直观性,如何创设联系学生生活实际的情景增强教学的趣味性,如何利用科学史实培养学生严谨求实的科学态度,如何创设丰富的情景探查学生微观认识本身的认识偏差,如何通过任务活动落实化学基本观念等。综上教学现象究其关键,本主题教学中存在的问题有:(1)概念建构孤立,不能结构化设计和整合安排教学;(2)以定义为中心教授概念,不重视概念之间的联系,不重视概念的功能价值。如:教师重视讲授原子和分子的区别,进行很多是非判断练习,但不关注学生学习原子和分子后对物质和微粒关系的认识,以及化学反应和物质性质的认识。
本研究针对“物质构成奥秘”的教学价值以及教与学的现状分析,力图构建“物质构成奥秘”主题的认识模型,促进学生的微观认识发展;基于此,设计并实施促进学生微观认识发展的“物质构成奥秘”主题的单元教学;并进一步反思、提炼促进学生微观认识发展的“物质构成奥秘”主题的有效教学策略。
2“物质构成奥秘”主题的认识模型
义务教育教科书(2012版)[6]在单元小结处呈现了“物质构成奥秘”单元的知识内容结构,总结了概念之间的关系,如图1。
然而,在日常教学中,图1常被一线教师作为单元知识总结图。为了让图1从表达来看更加功能化,我们将图的形式和认识功能整合起来,构建并提出“物质构成奥秘”主题的认识模型,如图2。该认识模型有3大功能:(1)明确了认识对象和认识角度;(2)体现了概念之间的关系;(3)落实了概念的功能价值。
在“物质构成奥秘”主题的认识模型中,可以看出本主题的认识对象是物质组成/构成、物质分类、物质性质及变化,认识角度是物质、分子、原子、元素,认识角度之间的关系可以成为学生认识特定对象、分析和解决特定问题时的推理路径和认识思路。由于认识角度之间是相互联系的,需要学生基于概念关系建构,发挥概念的认识功能价值,多角度系统分析和解决问题。这些概念的认识功能价值体现在:分子可用于区分物质,在此基础上可用于区分混合物和纯净物、区分物理性质和化学性质、区分物理变化和化学变化;原子可用于认识物质的构成、解释和区分分子、解释不同分子间的转化关系;元素是基于原子水平的概括,可用于区分单质和化合物、建立不同物质之间的联系、找到不同物质之间的异同之处。
3促进学生微观认识发展的“物质构成奥秘”主题的教学设计与实施
如何通过本主题的教学设计与实施促进学生的微观认识发展?即如何帮助学生建构“物质构成奥秘”主题的认识模型,能够基于微粒认识物质组成/构成、性质和变化,形成基于微粒的认识方式?
3.1单元整体结构化设计
本主题的单元整体结构化设计主要体现在以下几个方面:(1)将分子、原子、元素等概念基于整体关系去建构,通过引导学生讨论静态的物质组成/构成和分类,帮助学生建构这些概念。如给学生一组物质(混合物、纯净物),让学生进行分类,学生自然就建立了分子的概念;再让学生对其中的纯净物(单质、化合物)进行分类,学生自然就建立了元素的概念。(2)基于认识模型,通过认识物质组成/构成的变式任务、认识物质分类的变式任务、解释物质性质和变化等任务不断引出新概念并彰显概念的认识功能,促进学生微观认识发展。如让学生解释宏观的现象或反应,通过解释性问题的驱动,体会概念的认识功能。
3.2教学设计
根据“促进学生微观认识发展”的基本教学理念,单元整体结构化设计教学,具体见表2。
3.3教学实践与检验
我们选取北京市某示范校初三年级进行4节课的教学实践,并全程跟踪了其中一位授课教师关于该主题的日常教学。为了调查教学效果,分别在“物质构成奥秘”主题授课的前、后对学生进行侧重微观认识发展的问卷测查和访谈。由于本次教学中该校所有初三班级均参与了教学研究,故研究者在同等级学校安排对比班测试。
对比班教学首先分别进行分子、原子、元素等概念教学,再利用所学的概念从宏观和微观角度去认识物质和变化。具体教学过程是通过酒精挥发引入教学主题,提出假说“物质是由更小的物质构成,物质是由小微粒构成”;通过化学史实和物质的扫描隧道图证明“物质是由分子等微粒构成的”;通过氨水遇酚酞变红、酒精与水混合、比较压缩空气和水三个实验进行分子特征的教学,然后让学生从微观的角度分析宏观现象;通过物质的分子结构模型让学生认识到分子由原子构成,再从微观角度看物质、纯净物和混合物以及变化,总结分子和原子的区别与联系;通过化学史上原子模型认识的发展进行原子结构的教学;通过多种含铁元素的物质引出元素概念,观察元素周期表得出“决定元素种类的是质子数”,解读元素周期表,从宏观和微观角度结合看物质及其变化;最后进行化学式的意义、化学式的书写、简单化合物的命名、化合价的原则、化合价的标法和含义、化学式的计算、混合物中元素含量计算等教学。
测查及访谈具体安排如表3。
调查问卷为自编测试题,针对已有测验的探查点都是指向学生对微观概念本体认识的具体偏差,而没有探查学生建立微观概念后能够解释什么宏观的现象、事实或变化,即没有关注学生是否基于微观概念发展了相应的认识方式和能力。因此本测查问卷中设置描述性任务和解释性任务,测查学生如何分析和解释所看到宏观的现象、事实或变化,然后我们通过学生的答题情况进行赋分,看学生是否建立了微观认识角度,形成了微观认识方式。
用单维Rasch模型对学生样本的前后测数据进行量化分析,得到学生信度是0.78,试题信度是0.95,具体数据如表4。
根据表4,我们可以看出实验班与对比班学生在主题授课前差异性不显著,授课后实验班学生的平均能力值高于对比班学生,且存在显著性差异。
本研究进一步对学生概念关系、概念功能价值认识两个方面的情况进行了统计分析。对学生概念关系认识的测查主要看学生是否能够主动建立并应用“物质-微粒”、“分子-原子”、“物质-元素”、“元素-原子”、“原子-离子”间的关系来分析和解决问题,如表5所示的后测问卷中的第2题。对概念的功能价值认识的测查主要看学生能否建立认识角度去描述物质的组成/构成,对物质进行分类,解释物质性质和变化,如表6所示的后测问卷中的第4题。
分析结果见表7和表8。问卷测查和学生访谈结果表明,实验班学生对概念关系认识高于对比班学生,实验班学生多角度描述物质的组成/构成的能力优于对比班学生,但实验班学生多角度对物质进行分类、解释物质性质和变化的能力与对比班学生基本一致。同时,我们也可以发现,实验班和对比班学生解决问题时均很难自主做到宏微观结合,如表6所示的题目,大部分学生基于物质、元素的角度,或者基于分子、原子的角度。
4“物质构成奥秘”主题的有效教学策略
反思“物质构成奥秘”主题的教学设计与实施过程,可以提炼出以下有助于促进学生微观认识发展的“物质构成奥秘”主题的有效教学策略。
4.1基于概念关系整体建构相关知识
该主题的有效教学策略之一是基于概念关系整体建构有关知识,形成系统的认识模型,推进教学进程。在该主题教学的第一课时中,我们利用认识物质的组成/构成和物质分类任务驱动学生基于概念关系建立分子、原子、元素的概念,借助相对非定义性的概念理解找到分子、原子、元素与物质的关系,初步建构“物质构成奥秘”主题的认识模型;在教授完原子的构成后再次理解分子、原子、元素和物质的关系;整个教学过程中通过认识物质的组成/构成、物质分类、解释物质性质和变化等任务,反复多次从不同的视角梳理分子、原子、元素、物质这些概念之间的关系,系统建构“物质构成奥秘”主题的认识模型。
4.2基于核心概念认识功能和价值设计驱动性任务
该主题的有效教学策略之二是基于核心概念认识功能和价值设计驱动性任务,实现学生原有认识的探查、相应概念模型的建立、有关知识的应用。已有概念教学会先观察分子的存在,直接给出扫描隧道图,让学生体会原子的存在,完全是为了得出概念,而上述教学策略路线是学生学了分子、原子、元素的概念之后能帮助学生解决哪些任务,就将那些任务作为驱动性任务,激起学生学习的需求,驱动学生建立概念。基于此,我们在教学中设置了一系列驱动性任务,主要包括如何看物质的不同与相同、如何看物质的分类、如何看物质的性质和变化这3组任务,如表9。
4.3基于“宏观-微观-符号”三重表征设计学生活动
本主题的有效教学策略之三是基于“宏观-微观-符号”三重表征设计学生活动,发展认识方式类型。教学中,利用宏观的现象、反应、事实、信息等创设情景,将微观的概念外显,并使用化学用语分析、表达化学宏观的现象等。如在物质分类任务的学生活动中,不同小组的学生拿到不同表征方式的卡片;再如认识物质变化的任务中,从多个角度表征反应。
参考文献:
[1]中华人民共和国教育部制定.义务教育化学课程标准(2011年版)[S].北京:北京师范大学出版社,2012.
[2]Hans-DieterBarke,AlHazari,SileshiYitbarek[M].MisconceptionsinChemistry,2009.
[3]胡久华,王磊.初中化学教学策略[M].北京:北京师范大学出版社,2010.
[4]肖红梅,朱纷.“物质构成的奥秘”主题教学的难点分析及其突破[J].中学化学教学参考,2010,(11):8~9.
一、在真实背景中考查化学基本概念
每门学科中都有一系列基本概念,化学学科中有物质类别相关概念(如电解质、非电解质、氧化剂、还原剂等),化学反应相关概念(如氧化还原反应、非氧化还原反应、盐类水解、加成反应、消去反应、取代反应等),化学原理相关概念(如化学反应速率、化学平衡状态、化学能、焓变等)……每年的高考试卷中必定会有试题来测试这些重要概念,若是在真实背景中要求考生分析判断化学基本概念,显得特别有意义。
例1.(2013年北京理综)下列设备工作时,将化学能转化为热能的是()
硅太阳能电池锂离子电池太阳能集热器燃气灶
答案:D
简析:试题中给出硅太阳能电池、锂离子电池、太阳能集热器、燃气灶等生活中常见物品的图片,要求考生在真实背景中对化学能、热能等相关概念作出判断。硅太阳能电池是将太阳能直接转化为电能;锂离子电池是将化学能直接转化为电能;太阳能集热器是将太阳能转化为热能;燃料燃烧是将化学能直接转化为热能。
例2.(2013年安徽理综)我国科学家研制出一种催化剂,能在室温下高效催化空气中甲醛的氧化,其反应如下:催化剂
下列有关说法正确的是()
A.该反应为吸热反应
B.分子中的化学键为非极性键
C.分子中既含σ键又含π键
D.每生成1.8gH2O消耗2.24LO2
答案:C
简析:题中给出一个与新科研成果相关的素材,要求考生判断吸热反应、非极性键、σ键和π键等基本概念。题给反应式是真实背景的关键信息,这一反应实质就是甲醛的燃烧反应,所以一定是放热反应。CO2分子中含有极性共价键,HCHO分子中含有σ键和π键。未确定压强、温度等条件下无法判断气体体积。
这类试题中,真实背景是命题人给考生提供的一个从实际问题运用化学概念的载体,准确理解化学概念是解题的关键。
二、在真实背景中考查化学基本原理
质量守恒定律、元素周期律、氧化还原反应原理、化学平衡原理、原电池原理、电解原理、电离平衡和盐类水解平衡的移动等,都是化学学科中的核心内容和主干知识,且化学基本原理既是高考的重点,又是高考的难点。研究发现,命题者常常会将化学基本原理的考查融入生产、生活、科研等真实素材当中,要求考生运用化学基本原理解决联系实际的问题。解答与化学基本理论相关的试题,关键是在真实背景中找准相关的化学基本原理,再根据对应的规律来解决问题。
例3.(2013年福建理综)某科学家利用二氧化铈在太阳能作用下将转变为。其过程如下:
下列说法不正确的是()
A.该过程中CeO2没有消耗
B.该过程实现了太阳能向化学能的转化
答案:C
简析:试题以太阳能的利用为背景,涉及化学反应中的能量转化(化学反应相关能量转化判断、盖斯定律),原电池(电极反应式书写)等。
CO、O2构成的碱性燃料电池中,CO在负极被氧化转化为CO2-3,O2在正极上反应,电极反应式如D项所示。
例4.(2013年重庆理综)化学在环境保护中起着十分重要的作用,催化反硝化法和电化学降解法可用于治理水中硝酸盐的污染。
(1)催化反硝化法中,H2能将NO-3还原为N2。25℃时,反应进行10min,溶液的pH由7变为12。
①N2的结构式为。
②上述反应的离子方程式为,其平均反应速率v(NO-3)为mol·L-1·min-1。
③还原过程中可生成中间产物NO-2,写出3种促进NO-2水解的方法。
(2)电化学降解NO-3的原理如下图所示。
①电源正极为(填“A”或“B”),阴极反应式为。
②若电解过程中转移了2mol电子,则膜两侧电解液的质量变化差(Δm左-Δm右)为g。
答案:(1)①催化剂③加酸,升高温度,加水
(2)①
简析:试题以环境保护中的化学方法(去除水体中含氮物质)为背景,考查了氧化还原反应、化学方程式的书写和配平、化学反应速率的计算、盐类水解、电解原理等多个化学核心知识。
(1)由“溶液的pH由7变为12”可知,反应过程中增大到。从盐类水解平衡移动角度考虑,要促进阴离子水解,可以加适量的酸溶液、加热升高温度、加水稀释等。
(2)阴极发生还原反应、阳极发生氧化反应,这是电解反应的特征,根据“”可判断B是负极、A是正极。电极反应式分别为:
阴极:
阳极:
根据相关反应式,电解过程中转移2mol电子时,有如下变化:第一,阳极上放出16gO2,阴极上放出5.6gN2;第二,阳极区生成2molH+,阴极区消耗0.4molNO-3、生成24molOH-,所以阴极区新增了2mol-1价阴离子。由于电解池中间是质子交换膜,所以只可能是左侧溶液中的H+向右侧移动,以达到两侧溶液中电荷平衡,由此会造成左侧移出2molH+,质量减小2g,右侧质量又要增加2g。总体来看,质量变化差
复习过程中要重视与化学基本原理相关的基本问题。例如,书写电极反应式是与原电池、电解原理相关的最基本的问题,运用盖斯定律计算焓变是与化学反应中能量变化相关的重要的基本问题,判断是否处于化学平衡状态、求解平衡常数是与化学平衡相关的基本问题,弱电解质的电离平衡、盐类水解平衡、沉淀溶解平衡等相关内容最容易涉及离子方程式的书写、电荷守恒、质量守恒等基本问题。
三、在真实背景中考查物质的基本性质
熔点、沸点、溶解性、密度等物理性质,氧化性、还原性、酸性、碱性等化学性质,都是物质的基本性质,是化学学科中的最基础内容,所以物质的基本性质是每年高考化学的重点。高考试题中,要求考生在真实背景中联系物质的基本性质,解决实际问题。我们发现,大多数新情境试题中都会涉及物质的某种基本性质,解题时只要抓住基本性质的本质特征,就可顺利找到解题思路,获得正确答案。
例5.(2013年上海化学)2013年4月24日,东航首次成功进行了由地沟油生产的生物航空燃油的验证飞行。能区别地沟油(加工过的餐饮废弃油)与矿物油(汽油、煤油、柴油等)的方法是()
A.点燃,能燃烧的是矿物油
B.测定沸点,有固定沸点的是矿物油
C.加入水中,浮在水面上的是地沟油
D.加入足量氢氧化钠溶液共热,不分层的是地沟油
答案:D
简析:试题以地沟油、汽油、煤油、柴油为落点,要求考生用化学视角去分析与人类生活密切相关的问题,从化学对人类生活贡献的角度设计问题,要求考生了解化学对人类的正面作用。无独有偶,2013年全国理综II中也有一道选择题涉及地沟油制生物柴油的内容,考查有机物的性质。地沟油是酯类物质,汽油等是烃类物质,都属于混合物。从物理性质角度看,密度都比水小,都不溶于水。从化学性质角度看,地沟油能与氢氧化钠溶液等反应(皂化反应),汽油则不反应。
例6.(2013年上海化学)374℃、22.1MPa以上的超临界水具有很强的溶解有机物的能力,并含有较多的H+和OH-,由此可知超临界水()
A.显中性,pH等于7
B.表现出非极性溶剂的特性
C.显酸性,pH小于7
D.表现出极性溶剂的特性
答案:B
简析:本题表面上看是以学生陌生的“超临界水”为落点,实质上是考查分子的极性、溶液的pH、溶液的酸碱性等基本概念。水分子是极性分子,所以水属于极性溶剂。但超临界水“具有很强的溶解有机物的能力”,大多数有机物分子的极性比较弱,所以超临界水在溶解有机物时表现了非极性溶剂的特性。根据“含有较多的H+和OH-”可判断超临界水的pH小于7,但无论水的电离程度多大,纯净的水必定显中性。
例7.(2013年重庆理综)合金是建造航空母舰的主体材料。
(1)航母升降机可由铝合金制造。
①铝元素在周期表中的位置是,工业炼铝的原料由铝土矿提取而得,提取过程中通入的气体为。
②Al-Mg合金在焊接前用氢氧化钠溶液处理Al2O3膜,有关反应的化学方程式为。焊接过程中使用的保护气为(填化学式)。
(2)航母舰体材料为合金钢。
①舰体在海水中发生的电化学腐蚀主要为。
②航母用钢可由低硅生铁冶炼而成,则在炼铁过程中为降低硅含量需加入的物质为。
(3)航母螺旋桨主要用铜合金制造。
①80.0gCu-Al合金用酸完全溶解后,加入过量氨水,过滤得到白色沉淀39.0g气体,则合金中Cu的质量分数为。
②为分析某铜合金的成分,用酸将其完全溶解后,用NaOH溶液调节pH,当pH=3.4时开始出现沉淀,分别在pH为7.0、8.0时过滤沉淀。结合下图信息推断该合金中除铜外一定含有。
简析:试题以制造航空母舰的材料为背景,考查了镁、铝、铁、铜等元素化合物知识,着重从金属材料的特性、防护、成分分析等角度设置了一系列问题。第(1)小题,主要考查了氧化铝、偏铝酸钠、二氧化碳、镁等物质的基本性质。用铝土矿制取纯净氧化铝时,从铝的化合物角度看,经历了下列变化:氧化铝偏铝酸钠氢氧化铝氧化铝,其中偏铝酸钠转化为氢氧化铝的过程中需要通入CO2气体。
有关选择焊接铝、镁合金时保护气问题,实质上是考查镁的基本性质,由于镁易跟等发生反应,所以应选择氩等稀有气体为保护气。
第(2)小题,主要考查了铁、硅及其化合物的性质。铁易发生吸氧腐蚀,二氧化硅在高温下能与碳酸钙或氧化钙发生反应。
第(3)小题,考查了铜、铝等金属元素及其化合物的性质。根据铝的化合物遇氨水易生成氢氧化铝,可判断生成的39.0g白色沉淀是氢氧化铝,进而可计算出合金中铜的含量。
对照题给金属离子生成氢氧化物沉淀跟pH关系的图像可做出如下判断:根据“pH=34时开始出现沉淀”判断合金中不存在铁元素,存在铝元素;根据“pH为7.0、8.0时过滤沉淀”判断合金中还存在镍元素。
试题涉及面广,几个小题中的叙述简洁明了,问题设置直截了当,没有为了所谓考查能力而故意“绕圈子”,没有增加太多的“新信息”,也没有人为设置文字,突出化学问题的真实本色,是一道既有浓厚的化学味,又能较好测试解决实际问题能力的试题。这类试题给高三学生一个重要的信息,化学复习一定要整理归纳重要物质的基本性质,提高运用物质基本性质解决实际问题的能力。
四、在真实背景中考查化学实验基本问题
物质的制备和提纯、物质的性质探究、物质的检验与鉴别、化学反应条件的控制、物质的定量分析等是高中化学中的基本实验;发现化学问题的能力、运用已有化学知识做出合理假设的能力、设计实验方案和完成实验的能力、观察实验现象和收集实验资料的能力、分析和解释实验现象得出实验结论的能力等是化学实验探究的基本能力;试剂的保存和取用、加热和蒸发、溶解和结晶、蒸馏和分馏、过滤和抽滤、萃取和分液、层析、中和滴定等是高中化学实验的基本操作。这些都是每年高考化学必定会考到的内容,但每年的高考化学试题都会出现新的情境,2013年的试题出现了一些具有真实背景的实验试题,值得关注。
例8.(2013年重庆理综)按以下实验方案可以从海洋动物柄海鞘中提取具有抗肿瘤活性的天然产物。
下列说法错误的是()
A.步骤(1)需要过滤装置
B.步骤(2)需要用到分液漏斗
C.步骤(3)需要用到坩埚
D.步骤(4)需要蒸馏装置
答案:C
简析:试题的真实背景是“从海洋动物柄海鞘中提取抗肿瘤活性的天然产物”的实验过程,考查的基本问题是过滤、萃取、分液、蒸发浓缩、蒸馏等化学实验基本操作。
将实验方案与相关操作方法的特征联系起来可判断,步骤(1)是过滤。步骤(2)是萃取(从“水层”和“有机层”判断出),必定要用到分液漏斗。步骤(3)是从水溶液中分离出固体粗产品,应该浓缩结晶,一般使用蒸发皿,不会用到坩埚。步骤(4)是从有机层中分离出甲苯,应该用蒸馏方法。
例9.(2013年安徽理综)二氧化铈是一种重要的稀土氧化物。平板电视显示屏生产过程中产生大量的废玻璃粉末(含以及其他少量可溶于稀酸的物质)。某课题组以此粉末为原料回收铈,设计实验流程如下:
(1)洗涤滤渣A的目的是为了去除(填离子符号),检验该离子是否洗净的方法是。
(2)第②步反应的离子方程式是,滤渣B的主要成分是。
(3)萃取是分离稀土元素的常用方法。已知化合物TBP作为萃取剂能将铈离子从水溶液中萃取出来,TBP(填“能”或“不能”)与水互溶。实验室进行萃取操作时用到的主要玻璃仪器有、烧杯、玻璃棒、量筒等。
(4)取上述流程中得到的4产品0.536g,加硫酸溶解后,用0.1000mol·L-1标准溶液滴定至终点时(铈被还原为),消耗25.00mL标准溶液。该产品中的质量分数为。
答案:(1)取最后一次洗涤液,加入KSCN溶液,若不出现红色,则已洗净;反之,未洗净(其他合理答案均可)
(3)不能分液漏斗
(4)97.01%
简析:本题以化工生产工艺流程为素材,要求考生在真实背景中运用元素化合物、化学实验基本操作、化学计算等相关知识解决化学基本问题。沉淀洗涤(包括晶体洗涤)、萃取、滴定等化学基本实验问题构成了各个小题。
观察流程中信息可知滤渣表面可能吸附有等杂质离子。所以洗涤滤渣A的目的是为了除去滤渣表面的等杂质离子。要检验滤渣是否洗净,可以取最后流出的洗涤液做样品,用KSCN来检验其中是否含有。
观察流程图可发现,操作②后有生成,说明跟之间发生了氧化还原反应。滤渣B的主要成分是二氧化硅。
要从水溶液中萃取某种溶质,萃取剂应该不溶于水。萃取、分液操作应该用分液漏斗。
第(4)小题中,滴定时反应关系为:。
【关键词】高中化学学困生成因转化对策
【中图分类号】G632【文献标识码】A【文章编号】1674-4810(2013)34-0120-02
化学是高中学生较为惧怕的一门学科。在对在校高中学生进行的问卷调查中发现,认为化学学习有困难的学生占被调查对象的51.6%,化学在被调查的学科中高居榜首。有高达66.7%的学生认为在高一阶段就对化学学习失去信心。是什么原因造成如此多的高中化学学困生?如何才能帮助他们尽快适应高中化学的学习呢?
一高中化学学困生的成因
1.学生自身的因素
第一,对高中化学的学习准备不足。部分学生进入高中以后,对高中化学学习在思想上没有做好充分的准备,逐渐对化学学习失去信心。
第二,化学双基不扎实。部分学生由于在初中阶段对化学的一些基本概念和基本技能掌握不到位,无法跨越初中、高中化学学习之间的“鸿沟”而成为学困生。
第三,自主学习能力不强。由于种种原因,部分学生的自主学习能力在初中阶段没有得到很好的提升,进入高中以后,面对繁重的化学学习任务,倍感力不从心。
2.外部因素的影响
第一,中招政策的影响。由于中考实行的是毕业与升学二合一考试,化学试卷难度不大,再加上化学学科在中考中的权重偏低,客观上造成学生对化学重视不够。
第二,高中课改的先进理念与教学现状矛盾的影响。由于受到办学条件的限制,很多高中学校无法按照新课改理念以走班制形式开展选修课教学,学生无一例外要学习全部必修、选修课程,但根据课程规划,高中化学周课时量仅为2课时,这无疑增加了学生的课业负担,化学学困生人数增加就在所难免。
第三,初、高中化学教材和教学指导思想脱节的影响。首先,初、高中化学教材内容不衔接。其次,初、高中化学的教学指导思想不衔接。由于受中考“指挥棒”的影响,初三化学教师往往采取有选择地进行教学,不利于学生夯实双基。高中的化学教师由于面临课程紧、任务重的压力,往往忽略学生基础,高估了学生的学习水平,造成学生学习困难。
当然,造成高中化学学困生增多的外部因素还有很多,如社会大环境、家庭教育,教师的业务素养等都会对学生的学习产生不同程度的影响。
二高中化学学困生的转化策略
1.重视思想教育和心理疏导
要转化高中化学学困生,必须从“心”开始,加强思想教育和心理疏导,引导学生选择正确的方向,养成良好的学习习惯,培养良好的心理品质。
2.重视化学学习能力的培养
高中化学无论在教学内容的广度和深度上,还是在知识之间的内在联系上,都远远高于初中阶段,如果学生仍然沿用初中阶段那种单纯以学会为目的的学习方式,则无法适应高中阶段的化学学习。因此,提高学生化学学习能力,完成从“学会”到“会学”的转变,探索自主、合作、探究等学习方式,提高化学教学效率,应成为高中师生的共同课题。
3.切实做好初、高中化学教学的衔接,促进学生学习的自然过渡
初、高中化学教学衔接是在初、高中两个学段之间搭建桥梁,帮助学生实现平稳过渡。从这个意义上说,衔接教学既不是对初中知识的简单复习,更不是对高中知识的提前学习,关键是要帮助学生突破在初中阶段没有涉猎过,但高中化学又必须突破的能力盲点和知识盲点。
第一,着力突破化学学科观和方法论上的盲点。(1)全面理解化学定义的内涵和外延:化学属于自然科学;化学研究的对象是物质;化学研究的主要内容包括物质的组成、结构、性质、用途、合成以及变化规律等;化学学科的价值体现为通过对物质的研究,更好地认识自然、改造自然,以达到为人类社会和人类自身服务的目的。(2)树立基本的化学思想。常见的化学思想包括:分类思想、守恒思想、类比思想、发展思想、平衡思想等。(3)学会运用程序化思想开展化学学习与研究。按照一定的程序或模型对化学物质或现象进行研究,是进行有效化学学习的重要途径。
中学阶段常见的认知程序包括:一是认识物质的基本程序。按照“组成——结构——性质——用途——制取——保存运输”等来全面认识物质,是中学化学中最基本的思路。在此程序中,存在着结构决定性质,性质决定用途与制法的内在逻辑关系。二是研究物质组成的基本程序。元素符号——化学式——化学方程式,我们称之为化学用语。因此,掌握常见元素符号的书写是学好化学的基本要求,高中阶段要求掌握前36号元素以及相关主族的其他元素。三是研究物质结构的基本程序。研究物质结构主要是指从微观层面分析物质是由哪些微粒构成以及微粒以什么方式结合在一起的问题。构成物质(晶体)的基本微粒包括原子、离子、分子,而分子、离子是由原子形成的,因此研究物质结构的核心是研究原子结构。四是研究物质性质的基本程序。物质性质包括物理性质和化学性质。物理性质是指物质本身具有的属性,研究的基本程序是:颜色、状态、气味、密度、熔沸点、溶解性、导电导热性、延展性、硬度等。物质的化学性质首先是根据元素化合价判断物质是否具有氧化性、还原性,其次是根据物质的组成、分类判断是否具有酸(碱)性氧化物及酸、碱、盐的通性等。五是研究化学变化的基本程序。化学变化的过程既包括物质转化过程也包括能量转化过程。六是研究物质制取的基本程序。中学期间研究物质的制取主要指气体的制取,基本程序包括:反应原理、发生装置、收集装置、除杂装置、干燥装置、气体检验、尾气处理等,实验开始前,还要注意进行气密性检查,同时兼顾节约资源、实验安全和环境保护等。
第二,着力突破初高中化学知识结构上的盲点。学生中存在的初高中知识结构上的盲点,主要包括以下方面:1~20号元素的原子结构示意图;化合价的概念及常见元素的化合价;氧化物的概念及分类;氢化物的概念;酸碱盐的定义及分类;常见的难溶于水的酸碱盐;电离方程式;物质导电的原因等。
当然,由于学生现有知识结构和能力结构的不同,盲点也不尽相同,在教学过程中还要注重共性问题与个性问题的差异。初高中化学衔接,不能操之过急,要遵循循序渐进的原则,有计划、有层次地展开,切忌一步到位。
总之,要想改变高中化学学困生增多的不利局面,教师要更新教学理念,优化教学行为,不断提高自身专业素养。要坚持以学生的发展为本,根据学生最近发展区合理确定教学目标,因材施教,激趣导学,注重落实,让学生在学习化学的成功体验中树立信心,在解决实际问题的过程中提高能力,最终使学生摆脱对化学学习的恐惧,充满自信地投入到化学的学习中去。
参考文献
[1]马国富.化学教学中“学困生”的转化探究[J].中学生数理化(教与学),2011(10)
[2]李曼青.高中生化学概念学习的“邻近效应”研究[D].华东师范大学,2011
矿产资源开发利用中,矿物分离与富集的依据是有用矿物与脉石矿物之间的物理化学性质差异。这种物理化学性质指的是矿物比重、磁性、电性、表面化学性质等,与这些性质对应的矿物分离与富集方法分别是重力选矿、磁电选矿、浮选等。利用重力选矿和磁电选矿分离与富集矿物的方法受到矿物比重、磁性和电性难以改变的限制,应用范围相对较窄,而矿物表面性质可以通过人为改变,对应的浮选在矿物加工工程得到广泛的应用。可以说,所有的矿物都可以通过浮选方法进行分离与富集。正是由于浮选成为矿物分离与富集应用最为广泛的方法,而浮选的理论基础又是化学,所以化学是矿物加工工程学科的重要基础成为公认的事实,浮选作为矿物加工的主要方法,本身就是化学在矿物加工工程学科中的一种应用,因此,化学教育在矿物加工工程学科的基础理论教育中占有非常重要的地位。矿物和岩石是自然界中天然形成的,具有固定组成的固体化合物,由于成分不同、成矿条件不同,不同的矿物表面性质是不同的,即使相同组成的矿物,由于成矿地点和成矿条件不同也会具有不同的表面性质。对于浮选分离矿物而言,不同的矿物表面性质又有相似之处,矿物与岩石之间、矿物与矿物之间、岩石与岩石之间的表面性质异同,成为浮选分离与富集这些矿物的根本依据。浮选工程中,矿物与岩石的表面性质可以根据需要人为调节和改变,从而扩大需要分离的矿物之间的表面性质差异,实现矿物之间的有效分离。化学是学生需要学习的基础课程,从初中开始,就涉及到化学的学习,直到博士研究生,化学仍然是矿物加工工程学科学生需要继续学习的课程。甚至作为高层次的矿物加工工程学科的教授专家,仍在不间断的学习化学。化学与浮选是不可分的,可以说,无论多么深厚的化学知识,都不能说对于浮选已经足够了。化学有多深奥,浮选就有多深奥。矿物加工工程学科人才培养过程中,化学教育是根本之一,不同层次的人才对应不同程度的化学教育。只有重视化学教育,才能做好矿物加工学科的人才培养。
1浮选是化学在矿物加工工程中的应用
无机化学研究元素、单质和无机化合物的来源、制备、结构、性质、变化和应用的一门化学,是化学中最古老的化学分支学科。浮选的对象为矿物岩石,本身就是无机物,矿物的表面性质决定于矿物本身的结构和性质,矿物表面性质的研究离不开矿物内部组成、结构及性质的研究。矿物与岩石的研究将涉及无机化学的所有领域与内容,无机化学成为矿物加工工程学科学生的必修课程。有机化学又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希•维勒,在实验室中成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。矿物浮选是通过改变矿物表面的疏水性来实现的,而增加矿物表面疏水性的方法是采用含烃基的异极性分子在矿物表面吸附,含烃基的异极性分子就是典型的有机物质分子,研究捕收剂、起泡剂等浮选药剂,将涉及广泛的有机化学。有机化学也是矿物加工工程学科学生的必修课程。物理化学的内容大致可以概括为三个方面:化学体系的宏观平衡性质,以热力学的三个基本定律为理论基础,研究宏观化学体系在气态、液态、固态、溶解态以及高分散状态的平衡物理化学性质及其规律性。属于这方面的物理化学分支学科有化学热力学。溶液、胶体和表面化学。化学体系的微观结构和性质以量子理论为理论基础,研究原子和分子的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性的规律性。属于这方面的物理化学分支学科有结构化学和量子化学。化学体系的动态性质研究由于化学或物理因素的扰动而引起体系中发生的化学变化过程的速率和变化机理。属于这方面的物理化学分支学科有化学动力学、催化、光化学和电化学。物理化学是一门内容丰富,外延广阔的化学,浮选涉及的矿物岩石、矿浆溶液、有机分子以及泡沫浮选气体介质与矿物之间的相互作用等等,都涉及到物理化学。物理化学在矿物加工工程本科课程设置,占有最多的学时数,分两学期学习,是矿物加工工程学科至关重要的一门化学课程。物理化学学习好坏直接关系到浮选学习。物理化学也是矿物加工工程学科研究生入学考试的必考课程。分析化学的内容主要是:物质中元素、基团的定性分析;每种成分的数量或物质纯度的定量分析;物质中原子彼此联结而成分子和在空间排列的结构和立体分析。研究对象从单质到复杂的混合物和大分子化合物,从无机物到有机物,从低分子量到高分子量。样品可以是气态、液态和固态。称样重量可由100克以上以至毫克以下。1931年E.威森伯格提出的残渣测定,只取10微克样品,便属于超微量分析。所用仪器从试管直到附自动化设备并用电子计算机程序控制、记录和储存等的高级仪器。分析化学以化学基本理论和实验技术为基础,并吸收物理、生物、统计、电子计算机、自动化等方面的知识以充实本身的内容,从而解决科学、技术所提出的各种分析问题。矿物加工工程学科涉及的矿物岩石、溶液、有机和无机药剂、矿物加工原料及产品都需要通过分析检测得以定性或定量的描述,理论研究过程中的仪器分析检测,对矿物加工过程中的行为机理也才能进行研究和了解,所以矿物加工也与分析化学密切相关。矿物加工工程学科课程设置中,在本科阶段或者在研究生阶段需要对分析化学进行系统学习。结构化学、高分子化学、络合物化学、电化学、量子化学等是比以上四大化学更加细化的化学分支方向,在进行矿物浮选研究中,针对具体的研究内容和目的,不同程度地将涉及到这些更加深入和细化的内容。为了使化学与矿物加工工程学科结合的更加紧密,在研究生阶段还开设了浮选表面化学、浮选药剂化学、浮选电化学、浮选溶液化学等。尽管在矿物加工工程学科不同阶段开设了大量的化学课程,涉及的化学内容几乎涵盖了化学领域的所有内容,但对浮选的深入研究和理解仍然不够。矿物浮选发展至今,还有大量的浮选理论问题没有解决,浮选工艺的水平还有待提升,进一步强化化学教育和矿物浮选化学研究对矿物浮选的发展具有重要的基础作用。
2各层次人才培养中的化学教育
以技术工人为培养目标的中专和职业教育,由于生源大多是初中和高中毕业生,化学知识非常有限,仅对一些化学基础知识有所了解,特别是初中文化水平的学生,只能了解一些初步的化学现象,因此,在进行矿物加工专业知识教学的过程中,必须补充一些学习浮选技术必要的化学知识。这种化学知识的补充,可以贯穿在专业知识的学习过程中,也可以单独开设简单的化学课程。只有在学生初步了解和掌握了浮选技术必备的基本化学知识以后,浮选技术专业课程的教学才能有效开展,学生也才能真正理解矿物浮选的技术知识。对于以生产技术管理和技术应为目标的专科和本科教育,系统的课程设置已经考虑了化学对矿物加工工程的重要性,无机化学、有机化学、物理化学都是必修课程,学时数占到专业基础课程学时数很大的比例,经过系统的化学知识的学习,学生在学习浮选专业课程时,已经能够较深入理解矿物浮选中的化学问题,也能较好掌握浮选理论和浮选工艺专业知识。在生产技术管理和技术应用过程中,也基本能根据矿石性质的变化,应用所学到的化学知识和浮选理论,分析解决生产过程中出现的一般性的技术问题。以科学研究为目标的研究生教育,为了使学生能够从生产中发现和解决生产技术问题,具备独立从事矿物加工工程领域科学研究的能力,在大学期间学习无机化学、有机化学、物理化学的基础上,还需要进一步学习分析化学。通过分析化学的学习,可以让研究生掌握常规的分析检测技术,了解和掌握科学研究过程中所要使用的现代检测手段,发现、分析和研究试验过程中获得的数据、结果,从而解决科学技术问题。对于博士研究生,是要让他们更深层次理解矿物浮选的机理,培养其创新精神和意识,为此,从电子、原子、分子层面上理解矿物浮选理论是必要的,所以,在已经较好掌握了无机化学、有机化学、物理化学、分析化学的基础上,量子化学的学习和了解对于博士研究生来说是需要的。从以上的分析可知,浮选跟化学是不可分的,浮选实际上就是应用化学的一部分。无论是技术操作工人,还是从而浮选理论研究的博士研究生,不同程度都必须将化学作为基础,没有相应的化学基础,从事浮选技术应用、技术开发及浮选理论研究都是难以想象的。化学是浮选的基础,浮选是矿物加工工程最重要的方法,因而矿物加工工程学科的化学教育是极端重要的。
3重视矿物加工工程学科的化学教育
矿产资源是不可再生的,随着矿产资源的不断开发利用,资源枯竭已经成为制约社会和经济发展的重要问题之一,资源高效利用成为矿产资源开发与利用必须坚持的原则。如何实现资源的高效利用,显然矿物加工先进技术的开发与利用是实现资源高效的重要支撑。矿物加工工程中,浮选是最为主要的方法,而化学优势浮选的基础,通过浮选回收和利用矿产资源,实际上就是利用化学或者表面化学方法回收和利用矿产资源。重视矿物加工工程学科的化学教育问题,才可能从根本上提高人才质量,才能从源头上解决矿产资源高效利用的根本问题。矿产资源开采出来以后,多种资源共伴生,性质复杂,给资源中各种矿物的分离与富集带来了很多困难,为了实现资源的综合利用,只要有价值的矿物,都要进行回收,此时,这种矿物的物理化学性质研究,通过化学的方式改变各种矿物的性质,扩大彼此间性质的差异就成为矿物加工工程学科的重要课题,而所使用的方法基本上都是化学的方法,所以,矿物加工工程学科中的化学,决定着矿产资源的综合利用,也只有重视矿物加工工程学科的化学教育问题,才可能从根本上提高人才质量,才能从源头上解决矿产资源综合利用的根本问题。矿产资源天然形成的,其中的组分有的是对人类社会有益的,但同样存在对人类社会有害的组分,在矿产资源回收利用过程中,高效、综合回收有益组分的同时,处理好有害成分也是矿物加工工程学科的任务。只有解决了有害组分的处理,使得矿物加工过程中和矿物加工以后剩下来无用组分无害于人类和社会,矿产资源才能实现清洁利用。矿产资源中有害组分的处理,首先也必须掌握这些组分的性质,然后通过化学的、物理的方法对其进行分离、无害化处理等,而这些过程也与化学密切相关,所以,矿产资源的清洁利用也离不开化学。矿物加工工程学科的化学教育也是矿产资源清洁利用所要求的。矿物加工过程大都需要将矿石磨细,使矿石中的有用矿物与脉石矿物解离,而有用矿物与脉石矿物的分离大多是在水中进行的,矿物加工工程废水排放成为影响环境的重要问题。当今的矿物加工工程领域,要求选矿废水零排放,确保废水对环境不造成影响。废水零排放意味着废水必须回用,而废水回用将带来对选矿技术指标产生影响的问题,为了尽可能不是回水影响选矿技术指标,必须对回水进行性质研究,有的还要进行适当的化学处理,无论是回水性质的研究和回水的化学处理,都需要涉及化学知识,所以,矿物加工过程中废水对环境的影响、废水回用的处理等都直接与化学相关。矿物加工的环境问题也要求矿物加工工程学科重视化学教育。矿物加工过程中,做好了资源高效、综合、清洁利用,做好了废水的循环利用和实现了废水的零排放,就能实现矿产资源开发利用的可持续发展,而矿产资源高效、综合、清洁利用与废水处理均与化学密切相关,由此看出化学在矿物加工工程领域的重要性,重视化学教育是矿物加工工程学科的必然要求。
1.传统的高中化学元素化合物知识课程教材量大,结合实验比较详细,其中还穿插了化学反应原理教学,加大了学生的学习难度。新教材只在必修1中做了集中介绍,使元素化合物知识系统学习的容量大大减少,而且更多的贴近生产、生活与科研实际,学生在将知识连点、连线、连面时,容量和难度降低,在培养学生科学素养的前提下,适当减小了学生的课业负担。但在实际教学过程中,教师往往对知识的体系和深广度方面把握不准,导致学生学习的难度加大,主次不明,知识掌握的程度大大降低。
2.高考考查元素化合物知识比值高,直接或间接的占化学单科分值将近60。
3.部分学生在九年级化学成绩90分以上,上高中后,成绩很难达到80分以上,化学学习存在困惑和误区。
这就是说,对于新课程元素化合物知识,由于课程结构的变化,课程内容分配上的变化,使教师在教学中会遇到各种各样的问题,如用什么理论来指导元素化合物的学习、时间有限怎么办、如何在元素化合物的教学中体现和落实三维目标等等。
二、元素化合物知识教学的思路与方法
(一)明确课程标准的要求
《化学课程标准》明确指出,学习常见的化学物质时,要了解它们在生产、生活和化学科学研究中的作用,正确认识科学、技术与社会的相互关系,能运用所学知识解释生产、生活中的化学现象,解决与化学有关的一些实际问题,初步树立社会可持续发展的思想。并在内容标准中界定了元素化合物的主要知识:一是根据生产、生活中的应用实例或通过实验探究,了解钠、铝、铁、铜等金属及其重要化合物的主要性质,能列举合金材料的重要作用。二是通过实验了解氯、氮、硫、硅等非金属及其重要化合物的主要性质,认识其在生产中的应用和对生态环境的影响。其意在于引导学生学习常见物质时,将物质性质的学习融入生产、生活和化学科学研究活动中,让学生在实验探究中去认识物质,学习物质的性质,让学生了解元素化合物与自然界和社会的密切联系,能用综合的观点去学习认识有关物质,使学生从生活走进化学,从化学走向社会,直接体会到所学化学知识的社会价值,激发学生的学习兴趣,促进学生科学素养的提高。
(二)教学中应该注意的三个方面
1.抓住元素化合物知识中的核心内容进行整合教学。由于必修化学的教学课时非常有限,因此,元素化合物的教学内容要选择重要物质的主要性质,这和以前教师追求物质性质的细节教学有较大区别。另外,必修化学培养的是学生的基本化学素养,没有必要让每个学生都掌握枝节的知识,掌握核心内容更重要。
2.注意基本概念、基本理论的分层指导作用,逐步构建知识体系。元素化合物知识是一些具体物质的知识。众多的元素、大量的化合物,如果不能找出它们之间的联系和变化规律,就会使学生感到这是一堆难以识记的、繁杂的知识。因此,在教学中要充分发挥基本概念、基本理论的分层指导作用,用物质分类等基本概念指导必修1的元素化合物知识的学习,用周期表中物质结构等理论拓展和深化元素化合物知识,使学生由感性到理性逐步习得理论贯穿的、互相联系的元素化合物知识体系。
3.熟练使用化学用语。化学用语主要包括元素符号、离子符号、原子结构示意图、离子结构示意图、化学式、电子式、化学方程式、离子方程式等,是化学反应原理的具体呈现。有的学生基础知识熟练、扎实,但是化学用语书写潦草、不规范,经常在考试中失去不必要分数,实属冤枉。
(三)教给学生研究物质性质的思路和方法
研究物质性质的思路和方法有很多。例如,鲁科版用了专门的章节讲述研究物质性质的思路和方法,人教版在第一章就介绍了用实验法研究物质,不同版本都有物质分类、氧化还原、离子反应、酸、电离、元素周期律等基本概念,为物质性质的研究搭起了很好的理论平台和研究思路。学生在必修化学要学量的元素化合物知识,必然希望学生能够建立研究物质性质的思路和方法,从而为后面能够自主学习打下基础。因此,在元素化合物知识教学中要注意这些思路和方法的渗透和引导,这也是落实具体的过程与方法维度目标。
(四)合理把握知识的深广度
把握元素化合物知识教学的深广度是老师们非常关注的一个问题,鉴于新课标对元素化合物知识的要求,教材是新课标的具体化,编排了相关元素化合物的知识,但教材并没有全面、系统编排元素化合物的知识,而是侧重于与生产、生活和科研相关的常见物质,及相关的重要性质。普通高中新课程化学学科教学要求(必修模块)中详细界定了“内容标准”“学习要求”“教学建议”,如钠的学习要求中列出了“知识内容”及“认知目标”(A、B、C、D为认知目标的四个层次)是:(19)钠;物理性质(B);化学性质(与氧气、水的反应)(C);(20)钠的重要化合物;过氧化钠(颜色、状态)(A);碳酸钠、碳酸氢钠的物理性质和用途(B);碳酸钠、碳酸氢钠的化学性质比较(与酸反应、热稳定性)(C)。教学建议要求是:在金属及其化合物的主要性质的教学中,注意归纳、比较,让学生体会学习元素化合物知识的一般方法和思路,还列出了相关实验的教学建议。所以在教学中不必加深扩大教学内容,省教学要求中没有列举而教材中有的物质或性质,可作为知识性介绍,但不作考试要求,比如过氧化钠的化学性质。
本文对化学中体现的哲学原理作了简要介绍,并与其他学科作了类比,力图在化学教学中对学生进行哲学教育,以培养他们的哲学品质,提高他们的综合素质。
在这个充满竞争和功利性的紧张时代,我认为作为一名化学教师,应当充分利用化学课堂对学生进行哲学的教育,让学生意识到化学与哲学有着千丝万缕的联系,这将对他们的成长大有裨益。
一、现象与本质的教育
1.现象与本质的含义。http://
本质是事物的性质及此事物与他事物的内部联系,是由事物的内部矛盾构成的。本质是事物的内在的、比较深刻、比较稳定的方面,它不能被人的感官直接感知。任何事物内部都有其本身的特殊矛盾,这就构成了一事物区别与其他事物的特殊的本质。现象是事物的本质的外部表现,是事物的外在的、表面的、多变的方面,它能被人的感官所直接感知。
2.例析培养学生的透过现象认识本质的哲学思维。
(1)元素周期表的发现:这也是一个透过事物的现象认识本质的过程,只是在这个特殊的过程中,应用了黑格尔的量变到质变的规律。门捷列夫透过六十三种元素的杂乱无章的表面现象,发现了原子量的变化引起元素性质变化的本质。这是透过事物看到本质的一个典型例子。
(2)将二氧化硫分别通入红色的品红溶液和紫色的高锰酸钾溶液后,均能使其褪色,二氧化硫是否均表现了漂白性?
通过这些实验,让学生学会用现象和本质的哲学观点周密、严谨地看问题,做实验时,要认真观察现象,并认真思考,通过实验现象认识实验本质;学知识时,也要透过事物的现象看到并抓住事物的本质。理解了知识的本质,才是真正的掌握知识的内涵。
(3)事物的现象和本质是相互联系相互制约的。物质的本质不同,所表现出来的现象也就不同。在中学化学教学中,石墨和金刚石都是由碳元素组成的单质,但是其性质却相差甚远。这是为什么呢?在金刚石的晶体里,每个碳原子都被相邻的4个碳原子包围,处于4个碳原子的中心,以共价键和4个碳原子结合,成为正四面体结构,这些正四面体结构向空间发展,非常牢固,因而金刚石熔点沸点都较高,并难溶于溶剂。
石墨的晶体则是层状结构,层与层之间以范德华力相结合,因此片层之间容易滑动,石墨质软。但是由于同一层上的碳原子间以较强的共价键结合,所以石墨的熔点很高。
二、量变引起质变的教育
一位伟人说过:化学可以被认为研究物体由于量的构成的变化而发生的质变的科学。”一切自然科学的发展都是一个由量变到质变的过程。事物总是在不断发展变化的,而客观事物的变化总是只有质和量的变化,质和量的发展变化必然会呈现为量变和质变的两种状态。因此,让学生充分理解和掌握量变到质变的普遍规律的哲学思想非常重要。
1.量变与质变。
量变是事物一种细小的、不显著的数量上的增减和事物各个组成部分在空间排列次序上的变化,不是事物根本性质的变化。在化学中,物质浓度的变化,分子量、原子数目、化合价、键能、温度压强等物理量上的变化,以及物质排列次序、排列方式空间取向、晶体类型等的变化,反应过程的程度改变等都属量变的范畴。
质变是指事物由一种质态向另一种质态的飞跃,是事物根本性质的变化。例如物质的变化、同分异构体的相互转化、分子组成和反应性能的改变等。
2.化学中的实例。
量的变化引起质变的例子很多,如浓度、温度不同引起的质变以及元素周期表体现的规律等。
(1)浓度变化引起质变:稀硫酸具有酸的一切通性,但当改变硫酸的浓度时,随着硫酸浓度的改变,引起了性质的变化。浓硫酸具有强烈的吸水性、脱水性和氧化性。而这
转贴于
些正是稀硫酸所没有的。
在一个烧杯中放入恰好能反应的1l20mol?l-1的浓硫酸和20mol铜,反应也不能进行彻底。因为在整个反应过程中,随着反应的进行,硫酸的浓度逐渐降低,浓度”这种量的改变引起了质变,浓硫酸变成了稀硫酸,稀硫酸不能与铜反应,所以反应不能进行彻底,所以得到的产物cuso4应该是少于20mol,http://而不可能是20mol。
三、内因和外因的教育
内因是变化的根据,外因是变化的条件,外因通过内因起作用。在中学化学教学中,化学反应比比皆是,参加化学反应的各种物质本身的性质就是内因,也就是通常我们化学上所说的物质的结构。影响矛盾双方转化的条件,就是化学反应所需的条件,即外因。例如,在研究化学反应速率时,主要研究了外因对反应的影响:双氧水在一般情况下不能放出氧气,但只要我们用二氧化锰做催化剂,就可以制取氧气了。这是因为二氧化锰是催化剂,加快了化学反应进行。也研究了内因对反应的影响:铜在常温下不与稀硫酸反应,而铁可以,这是内因(物质本身的性质)不同造成的。
四、看事物一分为二的观点教育
科技虽然方便了人们的生活,但同时也带来了严重的环境污染,当今的大气、水、土壤等污染严重威胁着人类的生存,这就说明了科技的两面性——对人类有利和不利的方面。教师不妨带领同学们实地考察、询问群众,了解环境污染带来的危害。
五、进行辨证唯物主义教育可采取的方法和途径